Functions of Key Enzymes of Glycolytic Metabolism in Tumor Microenvironment.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cellular reprogramming Pub Date : 2023-06-01 Epub Date: 2023-05-12 DOI:10.1089/cell.2023.0010
Wenxin Xu, Jialei Weng, Minghao Xu, Qiang Zhou, Shaoqing Liu, Zhiqiu Hu, Ning Ren, Chenhao Zhou, Yinghao Shen
{"title":"Functions of Key Enzymes of Glycolytic Metabolism in Tumor Microenvironment.","authors":"Wenxin Xu, Jialei Weng, Minghao Xu, Qiang Zhou, Shaoqing Liu, Zhiqiu Hu, Ning Ren, Chenhao Zhou, Yinghao Shen","doi":"10.1089/cell.2023.0010","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) plays a crucial role in tumor initiation, growth and metastasis. Metabolic enzymes involved in tumor glycolytic reprogramming, including hexokinase, pyruvate kinase, and lactate dehydrogenase, not only play key roles in tumorigenesis and maintaining tumor cell survival, but also take part in the modulation of the TME. Many studies have been devoted to the role of key glycolytic enzymes in the TME over the past decades. We summarize the studies on the role of glycolytic enzymes in the TME of these years and found that glycolytic enzymes remodel the TME primarily through regulating immune escape, angiogenesis, and affecting stromal cells and exosomes. Notably, abnormal tumor vascular system, peritumoral stromal cells, and tumor immunosuppressive microenvironment are important contributors to the failure of antitumor therapy. Therefore, we discuss the mechanisms of regulation by key glycolytic enzymes that may contribute to a promising biomarker for therapeutic intervention. We argue that targeting key glycolytic enzymes in combination with antiprogrammed cell death ligand 1 or antivascular endothelial growth factor could emerge as the more integrated and comprehensive antitumor treatment strategy.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2023.0010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment (TME) plays a crucial role in tumor initiation, growth and metastasis. Metabolic enzymes involved in tumor glycolytic reprogramming, including hexokinase, pyruvate kinase, and lactate dehydrogenase, not only play key roles in tumorigenesis and maintaining tumor cell survival, but also take part in the modulation of the TME. Many studies have been devoted to the role of key glycolytic enzymes in the TME over the past decades. We summarize the studies on the role of glycolytic enzymes in the TME of these years and found that glycolytic enzymes remodel the TME primarily through regulating immune escape, angiogenesis, and affecting stromal cells and exosomes. Notably, abnormal tumor vascular system, peritumoral stromal cells, and tumor immunosuppressive microenvironment are important contributors to the failure of antitumor therapy. Therefore, we discuss the mechanisms of regulation by key glycolytic enzymes that may contribute to a promising biomarker for therapeutic intervention. We argue that targeting key glycolytic enzymes in combination with antiprogrammed cell death ligand 1 or antivascular endothelial growth factor could emerge as the more integrated and comprehensive antitumor treatment strategy.

肿瘤微环境中糖酵解代谢关键酶的功能
肿瘤微环境(TME)在肿瘤的发生、生长和转移过程中起着至关重要的作用。参与肿瘤糖酵解重编程的代谢酶,包括己糖激酶、丙酮酸激酶和乳酸脱氢酶,不仅在肿瘤发生和维持肿瘤细胞存活方面发挥着关键作用,而且还参与了对肿瘤微环境的调控。在过去的几十年中,许多研究都致力于探讨关键糖酵解酶在 TME 中的作用。我们总结了这些年来有关糖酵解酶在肿瘤组织生长环境中作用的研究,发现糖酵解酶主要通过调节免疫逃逸、血管生成以及影响基质细胞和外泌体来重塑肿瘤组织生长环境。值得注意的是,异常的肿瘤血管系统、瘤周基质细胞和肿瘤免疫抑制微环境是导致抗肿瘤治疗失败的重要原因。因此,我们讨论了关键糖酵解酶的调控机制,这可能有助于为治疗干预提供有前景的生物标志物。我们认为,靶向关键糖酵解酶与抗程序性细胞死亡配体 1 或抗血管内皮生长因子相结合,可能成为更综合、更全面的抗肿瘤治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信