FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis.

IF 8 1区 生物学 Q1 MICROBIOLOGY
Clara Lambert, Claire Poyart, Alexandra Gruss, Agnes Fouet
{"title":"FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis.","authors":"Clara Lambert,&nbsp;Claire Poyart,&nbsp;Alexandra Gruss,&nbsp;Agnes Fouet","doi":"10.1128/mmbr.00029-22","DOIUrl":null,"url":null,"abstract":"<p><p>Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of <i>fabT</i> expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 3","pages":"e0002922"},"PeriodicalIF":8.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491164/pdf/mmbr.00029-22.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00029-22","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of fabT expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.

细菌转录抑制因子限制无用脂肪酸的生物合成。
磷脂是决定细胞功能和与环境相互作用的重要膜成分。对于细菌性病原体,在感染过程中迅速调整磷脂组成以适应不断变化的条件对其生长和生存至关重要。脂肪酸合成(FASII)调节因子是这一过程的核心。这篇综述将重点放在FabT上,它是链球菌、肠球菌和乳球菌中FASII的marr家族调节因子。将讨论在小鼠和非人灵长类动物感染模型中报道的FabT在毒力中的作用。我们介绍了FabT结构、FabT调控以及根据生长条件调控的变化。FabT的一个独特之处在于它被一种非常规的辅助抑制因子酰基-酰基载体蛋白(ACP)调节。一些细菌表达两种ACP蛋白,它们通过与内源性或外源性脂肪酸来源的相互作用来区分,其中一种引起强烈的FabT抑制。该系统似乎允许优先使用环境脂肪酸,从而通过限制无用的FASII活性来节省能量。控制fabT的表达和活性将多种代谢途径与FASII联系起来。本文总结了FabT损失的各种生理后果,表明FabT有潜力作为窄范围的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信