Qi Chen, Fangfang Shi, Chen Yang, Guangfeng Mao, Chunguang Zhou, Limin Liu, Xi Yang, Yueming Song
{"title":"Lentivirus-shRNA Mediated Prolyl Hydroxylase 2 Knockdown Increases HIF-1α and Inhibits Nucleus Pulposus Cells Degeneration.","authors":"Qi Chen, Fangfang Shi, Chen Yang, Guangfeng Mao, Chunguang Zhou, Limin Liu, Xi Yang, Yueming Song","doi":"10.1159/000520795","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia-inducible factor (HIF) plays a crucial role in regulating the hypoxia-inducible state of nucleus pulposus cells in the intervertebral disc. In addition, the oxygen-dependent conversion of HIF-1α in nucleus pulposus cells is controlled by the protein proline 4-hydroxylase domain (PHD) family. To explore whether HIF-1α can be regulated by modulating PHD homologs to inhibit nucleus pulposus degeneration, PHD2-shRNAs were designed and a PHD2 interference vector was constructed. The expression of HIF-1α and PHD2 genes in the nucleus pulposus cells in the experimental group was detected by RT-PCR, and the expression of HIF-1α, MMP-2, Aggrecan, and Col II proteins in the P0-P3 cells in the experimental group and the control group was detected by Western blotting. The apoptosis of P0-P3 nucleus pulposus cells was detected by flow cytometry. After lentivirus infection, the interference efficiency of the PHD2 gene decreased with cell passage. The apoptosis of P1-P3 cells in the experimental group was significantly lower than that in the control group or degeneration group. Compared to the control group, the expression of HIF-1α, Aggrecan, and Col II proteins increased significantly, and the expression of MMP-2 protein decreased significantly. In conclusion, interference with PHD2 can upregulate the expression of HIF-1α, accelerate anabolism, reduce catabolism, inhibit apoptosis of nucleus pulposus cells, and then these can inhibit degeneration of nucleus pulposus cells. Our results can provide an effective therapeutic target in intervertebral discs during intervertebral disc degeneration, and this may have important clinical significance.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 2","pages":"185-193"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000520795","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Hypoxia-inducible factor (HIF) plays a crucial role in regulating the hypoxia-inducible state of nucleus pulposus cells in the intervertebral disc. In addition, the oxygen-dependent conversion of HIF-1α in nucleus pulposus cells is controlled by the protein proline 4-hydroxylase domain (PHD) family. To explore whether HIF-1α can be regulated by modulating PHD homologs to inhibit nucleus pulposus degeneration, PHD2-shRNAs were designed and a PHD2 interference vector was constructed. The expression of HIF-1α and PHD2 genes in the nucleus pulposus cells in the experimental group was detected by RT-PCR, and the expression of HIF-1α, MMP-2, Aggrecan, and Col II proteins in the P0-P3 cells in the experimental group and the control group was detected by Western blotting. The apoptosis of P0-P3 nucleus pulposus cells was detected by flow cytometry. After lentivirus infection, the interference efficiency of the PHD2 gene decreased with cell passage. The apoptosis of P1-P3 cells in the experimental group was significantly lower than that in the control group or degeneration group. Compared to the control group, the expression of HIF-1α, Aggrecan, and Col II proteins increased significantly, and the expression of MMP-2 protein decreased significantly. In conclusion, interference with PHD2 can upregulate the expression of HIF-1α, accelerate anabolism, reduce catabolism, inhibit apoptosis of nucleus pulposus cells, and then these can inhibit degeneration of nucleus pulposus cells. Our results can provide an effective therapeutic target in intervertebral discs during intervertebral disc degeneration, and this may have important clinical significance.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.