After a century of nisin research - where are we now?

IF 10.1 2区 生物学 Q1 MICROBIOLOGY
Des Field, Miguel Fernandez de Ullivarri, R Paul Ross, Colin Hill
{"title":"After a century of nisin research - where are we now?","authors":"Des Field, Miguel Fernandez de Ullivarri, R Paul Ross, Colin Hill","doi":"10.1093/femsre/fuad023","DOIUrl":null,"url":null,"abstract":"<p><p>It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuad023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.

Abstract Image

Abstract Image

Abstract Image

经过一个世纪的 nisin 研究--我们现在在哪里?
自 nisin 在发酵牛奶培养物中被发现以来,已经过去了将近一个世纪,巧合的是,就在同一年,青霉素首次被描述出来。在过去的 100 年中,这种经过高度修饰的小型五环肽不仅在食品工业中成功地用作防腐剂,而且还成为我们了解参与杀菌剂生物合成的基因的遗传组织、表达和调控的范例--这是原核生物中翻译后广泛修饰的少数情况之一。在了解复杂的尼生素生物合成方面的最新进展揭示了修饰和运输机制的细胞位置,以及产生活性尼生素并提供抗性和免疫力所需的一系列协调的时空事件。由于人们日益认识到胃肠道微生物群在健康和疾病中的作用,不断从人类和动物胃肠道中发现新的天然变体,这引发了人们对尼生素潜在应用于影响微生物群的兴趣。此外,跨学科方法利用生物技术的进步对尼生素进行生物工程改造,生产出新型变体,并扩展了尼生素在生物医学领域的应用功能。本综述将讨论这些方面的最新研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信