Pietro Brunetti, Diletta Berardinelli, Arianna Giorgetti, Hannes Max Schwelm, Belal Haschimi, Susi Pelotti, Francesco Paolo Busardò, Volker Auwärter
{"title":"Human metabolism and basic pharmacokinetic evaluation of AP-238: A recently emerged acylpiperazine opioid","authors":"Pietro Brunetti, Diletta Berardinelli, Arianna Giorgetti, Hannes Max Schwelm, Belal Haschimi, Susi Pelotti, Francesco Paolo Busardò, Volker Auwärter","doi":"10.1002/dta.3535","DOIUrl":null,"url":null,"abstract":"<p>As a consequence of recently implemented legal restrictions on fentanyl analogs, a new generation of acylpiperazine opioids appeared on the illicit drug market. AP-238 was the latest opioid in this series to be notified by the European Early Warning System in 2020 and was involved in an increasing number of acute intoxications. AP-238 metabolism was investigated to provide useful markers of consumption. For the tentative identification of the main phase I metabolites, a pooled human liver microsome assay was performed. Further, four whole blood and two urine samples collected during post-mortem examinations and samples from a controlled oral self-administration study were screened for anticipated metabolites. In total, 12 AP-238 phase I metabolites were identified through liquid chromatography-quadrupole time-of-flight mass spectrometry in the in vitro assay. All of these were confirmed in vivo, and additionally, 15 phase I and five phase II metabolites were detected in the human urine samples, adding up to a total of 32 metabolites. Most of these metabolites were also detected in the blood samples, although mostly with lower abundances. The main in vivo metabolites were built by hydroxylation combined with further metabolic reactions such as <i>O</i>-methylation or <i>N-</i>deacylation. The controlled oral self-administration allowed us to confirm the usefulness of these metabolites as proof of intake in abstinence control. The detection of metabolites is often crucial to documenting consumption, especially when small traces of the parent drug can be found in real samples. The in vitro assay proved to be suitable for the prediction of valid biomarkers of novel synthetic opioid intake.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":"16 2","pages":"221-235"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dta.3535","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dta.3535","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As a consequence of recently implemented legal restrictions on fentanyl analogs, a new generation of acylpiperazine opioids appeared on the illicit drug market. AP-238 was the latest opioid in this series to be notified by the European Early Warning System in 2020 and was involved in an increasing number of acute intoxications. AP-238 metabolism was investigated to provide useful markers of consumption. For the tentative identification of the main phase I metabolites, a pooled human liver microsome assay was performed. Further, four whole blood and two urine samples collected during post-mortem examinations and samples from a controlled oral self-administration study were screened for anticipated metabolites. In total, 12 AP-238 phase I metabolites were identified through liquid chromatography-quadrupole time-of-flight mass spectrometry in the in vitro assay. All of these were confirmed in vivo, and additionally, 15 phase I and five phase II metabolites were detected in the human urine samples, adding up to a total of 32 metabolites. Most of these metabolites were also detected in the blood samples, although mostly with lower abundances. The main in vivo metabolites were built by hydroxylation combined with further metabolic reactions such as O-methylation or N-deacylation. The controlled oral self-administration allowed us to confirm the usefulness of these metabolites as proof of intake in abstinence control. The detection of metabolites is often crucial to documenting consumption, especially when small traces of the parent drug can be found in real samples. The in vitro assay proved to be suitable for the prediction of valid biomarkers of novel synthetic opioid intake.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.