{"title":"Increased number and domain of interlaminar astrocytes in layer I of the temporal cortex in epilepsy.","authors":"Nan Zhou, Zhen Fan, Yusheng Tong, Xing Xiao, Yongsheng Xie, Zengxin Qi, Liang Chen","doi":"10.1111/nan.12913","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The functions of the interlaminar astrocytes in layer I of the human cortex are currently unknown. Here, we aimed to explore whether there is any morphological remodelling of interlaminar astrocytes in layer I of the temporal cortex in epilepsy.</p><p><strong>Methods: </strong>Tissues were obtained from 17 epilepsy surgery patients and 17 post-mortem age-matched controls. In addition, 10 Alzheimer's disease (AD) patients and 10 age-matched controls were used as the disease control group. Paraffin sections (6 μm) and frozen sections (35 or 150 μm) of inferior temporal gyrus tissue were used for immunohistochemistry. With the use of tissue transparency, 3D reconstruction and hierarchical clustering, we performed a quantitative morphological analysis of astrocytes.</p><p><strong>Results: </strong>Upper and lower zones were identified in layer I of the human cortex. Compared with the astrocytes in layers IV-V, layer I interlaminar astrocytes occupied a significantly smaller volume and exhibited shorter and fewer process intersections. Increased Chaslin's gliosis (consisting of types I and II subpial interlaminar astrocytes) and number of glial fibrillary acidic protein (GFAP)-immunoreactive interlaminar astrocytes in layer I of the temporal cortex were confirmed in patients with epilepsy. There was no difference in the number of interlaminar astrocytes in layer I between AD and age-matched control groups. Using tissue transparency and 3D reconstruction technology, the astrocyte domain in the human temporal cortex was classified into four clusters, among which the interlaminar astrocytes in cluster II were more abundant in epilepsy, showing specific topological structures in patients with epilepsy. Furthermore, there was a significant increase in the astrocyte domain of interlaminar cells in layer I of the temporal cortex in patients with epilepsy.</p><p><strong>Conclusion: </strong>The observed significant astrocytic structural remodelling in the temporal cortex of epilepsy patients showed that the astrocyte domain in layer I may play an important role in temporal lobe epilepsy.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"49 3","pages":"e12913"},"PeriodicalIF":4.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.12913","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The functions of the interlaminar astrocytes in layer I of the human cortex are currently unknown. Here, we aimed to explore whether there is any morphological remodelling of interlaminar astrocytes in layer I of the temporal cortex in epilepsy.
Methods: Tissues were obtained from 17 epilepsy surgery patients and 17 post-mortem age-matched controls. In addition, 10 Alzheimer's disease (AD) patients and 10 age-matched controls were used as the disease control group. Paraffin sections (6 μm) and frozen sections (35 or 150 μm) of inferior temporal gyrus tissue were used for immunohistochemistry. With the use of tissue transparency, 3D reconstruction and hierarchical clustering, we performed a quantitative morphological analysis of astrocytes.
Results: Upper and lower zones were identified in layer I of the human cortex. Compared with the astrocytes in layers IV-V, layer I interlaminar astrocytes occupied a significantly smaller volume and exhibited shorter and fewer process intersections. Increased Chaslin's gliosis (consisting of types I and II subpial interlaminar astrocytes) and number of glial fibrillary acidic protein (GFAP)-immunoreactive interlaminar astrocytes in layer I of the temporal cortex were confirmed in patients with epilepsy. There was no difference in the number of interlaminar astrocytes in layer I between AD and age-matched control groups. Using tissue transparency and 3D reconstruction technology, the astrocyte domain in the human temporal cortex was classified into four clusters, among which the interlaminar astrocytes in cluster II were more abundant in epilepsy, showing specific topological structures in patients with epilepsy. Furthermore, there was a significant increase in the astrocyte domain of interlaminar cells in layer I of the temporal cortex in patients with epilepsy.
Conclusion: The observed significant astrocytic structural remodelling in the temporal cortex of epilepsy patients showed that the astrocyte domain in layer I may play an important role in temporal lobe epilepsy.
期刊介绍:
Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.