I N Schendrigin, L D Timchenko, I V Rzhepakovsky, S S Avanesyan, M N Sizonenko, W-D Grimm, S N Povetkin, S I Piskov
{"title":"Clinical and Pathogenetic Significance of Amylase Level and Microtomographic Index of Synovial Fluid in Various Joint Lesions.","authors":"I N Schendrigin, L D Timchenko, I V Rzhepakovsky, S S Avanesyan, M N Sizonenko, W-D Grimm, S N Povetkin, S I Piskov","doi":"10.17691/stm2022.14.6.05","DOIUrl":null,"url":null,"abstract":"<p><p><b>The aim of the investigation</b> was to study the level of amylolytic activity and microtomographic index of synovial fluid density as well as to substantiate their clinical and pathogenetic significance by identifying correlations with the known informative indicators reflecting characteristic features of the pathological process in various joint diseases.</p><p><strong>Materials and methods: </strong>Samples of synovial fluid from 95 patients with various joint pathologies at the stage of the disease progression characterized by copious effusion into articular cavities have been examined. Synovial fluid samples obtained by knee arthrocentesis served as a material for the investigation. Conventional methods were used to determine the concentration of uric acid, inorganic phosphorus, total protein, and amylolytic activity level in the selected samples while X-ray density was identified by computed microtomography.</p><p><strong>Results: </strong>All samples of pathological joint fluid have shown a high level of amylolytic activity as compared to the synovial fluid from healthy joints. The relationship between the level of amylolytic activity in synovia and specific joint pathology has been identified. It has also been found that uric acid values, inorganic phosphorus concentrations, and total protein in various types of joint damage may influence X-ray density of the synovial fluid. Correlations between the studied indices have been established.</p><p><strong>Conclusion: </strong>New data on the level of synovia amylolytic activity has been obtained in one non-inflammatory and six different inflammatory diseases. Pathogenically determined correlation between the microtomographic index of synovial fluid density and concentrations of uric acid, inorganic phosphorus, total protein has been confirmed. Specific indicators of X-ray density of synovia in various joint pathologies as well as unidirectional and multidirectional data in comparison with the norm allow us to consider X-ray microtomography as a method that reveals additional details during investigation of synovial fluid density and brings new surrogate markers for the study of pathogenetic mechanisms of the development, differentiation, and treatment of various joint pathologies.</p>","PeriodicalId":51886,"journal":{"name":"Sovremennye Tehnologii v Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171054/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye Tehnologii v Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2022.14.6.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 6
Abstract
The aim of the investigation was to study the level of amylolytic activity and microtomographic index of synovial fluid density as well as to substantiate their clinical and pathogenetic significance by identifying correlations with the known informative indicators reflecting characteristic features of the pathological process in various joint diseases.
Materials and methods: Samples of synovial fluid from 95 patients with various joint pathologies at the stage of the disease progression characterized by copious effusion into articular cavities have been examined. Synovial fluid samples obtained by knee arthrocentesis served as a material for the investigation. Conventional methods were used to determine the concentration of uric acid, inorganic phosphorus, total protein, and amylolytic activity level in the selected samples while X-ray density was identified by computed microtomography.
Results: All samples of pathological joint fluid have shown a high level of amylolytic activity as compared to the synovial fluid from healthy joints. The relationship between the level of amylolytic activity in synovia and specific joint pathology has been identified. It has also been found that uric acid values, inorganic phosphorus concentrations, and total protein in various types of joint damage may influence X-ray density of the synovial fluid. Correlations between the studied indices have been established.
Conclusion: New data on the level of synovia amylolytic activity has been obtained in one non-inflammatory and six different inflammatory diseases. Pathogenically determined correlation between the microtomographic index of synovial fluid density and concentrations of uric acid, inorganic phosphorus, total protein has been confirmed. Specific indicators of X-ray density of synovia in various joint pathologies as well as unidirectional and multidirectional data in comparison with the norm allow us to consider X-ray microtomography as a method that reveals additional details during investigation of synovial fluid density and brings new surrogate markers for the study of pathogenetic mechanisms of the development, differentiation, and treatment of various joint pathologies.