Sf3b4 regulates chromatin remodeler splicing and Hox expression

IF 2.2 3区 生物学 Q4 CELL BIOLOGY
Shruti Kumar , Sabrina Shameen Alam , Eric Bareke , Marie-Claude Beauchamp , Yanchen Dong , Wesley Chan , Jacek Majewski , Loydie A. Jerome-Majewska
{"title":"Sf3b4 regulates chromatin remodeler splicing and Hox expression","authors":"Shruti Kumar ,&nbsp;Sabrina Shameen Alam ,&nbsp;Eric Bareke ,&nbsp;Marie-Claude Beauchamp ,&nbsp;Yanchen Dong ,&nbsp;Wesley Chan ,&nbsp;Jacek Majewski ,&nbsp;Loydie A. Jerome-Majewska","doi":"10.1016/j.diff.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>SF3B proteins form a heptameric complex in the U2 small nuclear ribonucleoprotein, essential for pre-mRNA splicing. Heterozygous pathogenic variants in human <em>SF3B4</em> are associated with head, face, limb, and vertebrae defects. Using the CRISPR/Cas9 system, we generated mice with constitutive heterozygous deletion of <em>Sf3b4</em> and showed that mutant embryos have abnormal vertebral development. Vertebrae abnormalities were accompanied by changes in levels and expression pattern of <em>Ho</em>x genes in the somites. RNA sequencing analysis of whole embryos and somites of <em>Sf3b4</em> mutant and control litter mates revealed increased expression of other <em>Sf3b4</em> genes. However, the mutants exhibited few differentially expressed genes and a large number of transcripts with differential splicing events (DSE), predominantly increased exon skipping and intron retention. Transcripts with increased DSE included several genes involved in chromatin remodeling that are known to regulate <em>Hox</em> expression. Our study confirms that <em>Sf3b4</em> is required for normal vertebrae development and shows, for the first time, that like <em>Sf3b1</em>, <em>Sf3b4</em> also regulates <em>Hox</em> expression. We propose that abnormal splicing of chromatin remodelers is primarily responsible for vertebral defects found in <em>Sf3b4</em> heterozygous mutant embryos.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000257","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

SF3B proteins form a heptameric complex in the U2 small nuclear ribonucleoprotein, essential for pre-mRNA splicing. Heterozygous pathogenic variants in human SF3B4 are associated with head, face, limb, and vertebrae defects. Using the CRISPR/Cas9 system, we generated mice with constitutive heterozygous deletion of Sf3b4 and showed that mutant embryos have abnormal vertebral development. Vertebrae abnormalities were accompanied by changes in levels and expression pattern of Hox genes in the somites. RNA sequencing analysis of whole embryos and somites of Sf3b4 mutant and control litter mates revealed increased expression of other Sf3b4 genes. However, the mutants exhibited few differentially expressed genes and a large number of transcripts with differential splicing events (DSE), predominantly increased exon skipping and intron retention. Transcripts with increased DSE included several genes involved in chromatin remodeling that are known to regulate Hox expression. Our study confirms that Sf3b4 is required for normal vertebrae development and shows, for the first time, that like Sf3b1, Sf3b4 also regulates Hox expression. We propose that abnormal splicing of chromatin remodelers is primarily responsible for vertebral defects found in Sf3b4 heterozygous mutant embryos.

Sf3b4调控染色质重塑子剪接和Hox表达
SF3B蛋白在U2小核核糖核蛋白中形成七聚体复合物,对前信使核糖核酸剪接至关重要。人类SF3B4中的杂合致病性变体与头部、面部、肢体和脊椎缺陷有关。使用CRISPR/Cas9系统,我们产生了Sf3b4组成型杂合缺失的小鼠,并表明突变胚胎具有异常的脊椎发育。脊椎动物异常伴随着体节中Hox基因水平和表达模式的变化。对Sf3b4突变体和对照窝配偶的整个胚胎和体节的RNA测序分析显示,其他Sf3b4.基因的表达增加。然而,突变体表现出很少的差异表达基因和大量具有差异剪接事件(DSE)的转录物,主要增加了外显子跳跃和内含子保留。DSE增加的转录物包括几个参与染色质重塑的基因,这些基因已知调节Hox表达。我们的研究证实了Sf3b4是正常椎骨发育所必需的,并首次表明,与Sf3b1一样,Sf3b4也调节Hox的表达。我们认为染色质重塑因子的异常剪接是Sf3b4杂合突变胚胎中发现的脊椎缺陷的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信