Person Specific Parameter Heterogeneity in the 2PL IRT Model.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2024-11-01 Epub Date: 2023-06-23 DOI:10.1080/00273171.2023.2224312
Alexandra Lane Perez, Eric Loken
{"title":"Person Specific Parameter Heterogeneity in the 2PL IRT Model.","authors":"Alexandra Lane Perez, Eric Loken","doi":"10.1080/00273171.2023.2224312","DOIUrl":null,"url":null,"abstract":"<p><p>Following Kelderman and Molenaar's demonstration that a factor model with person specific factor loadings is almost indistinguishable from the standard factor model in terms of overall fit, we examined person specific measurement models in Item Response Theory, person specific discrimination and difficulty parameters were created by adding random variation at the item by person level. Using standard fitting algorithms for the 2PL IRT there was modest evidence of person- or item-level misfit using common diagnostic tools. The item difficulties were well-estimated, but the item discriminations were noticeably underestimated. As found by Kelderman and Molenaar, factor scores were estimated with less than expected reliability due to the underlying heterogeneity. The person specific models considered here are basically limiting cases of IRT models with multilevel, mixture, or differential item functioning structure. We conclude with some thoughts regarding real-world sources of heterogeneity that might go unacknowledged in common testing applications.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1159-1165"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2224312","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Following Kelderman and Molenaar's demonstration that a factor model with person specific factor loadings is almost indistinguishable from the standard factor model in terms of overall fit, we examined person specific measurement models in Item Response Theory, person specific discrimination and difficulty parameters were created by adding random variation at the item by person level. Using standard fitting algorithms for the 2PL IRT there was modest evidence of person- or item-level misfit using common diagnostic tools. The item difficulties were well-estimated, but the item discriminations were noticeably underestimated. As found by Kelderman and Molenaar, factor scores were estimated with less than expected reliability due to the underlying heterogeneity. The person specific models considered here are basically limiting cases of IRT models with multilevel, mixture, or differential item functioning structure. We conclude with some thoughts regarding real-world sources of heterogeneity that might go unacknowledged in common testing applications.

2PL IRT 模型中的个人特定参数异质性。
根据 Kelderman 和 Molenaar 的研究,具有特定人员因素负荷的因素模型在总体拟合方面与标准因素模型几乎没有区别,因此我们研究了项目反应理论中的特定人员测量模型,通过在项目层面上添加随机变化来创建特定人员的区分度和难度参数。使用 2PL IRT 的标准拟合算法,使用常见的诊断工具,在人或项目层面上的不拟合现象并不明显。项目难度被很好地估计了,但项目区分度却明显被低估了。正如 Kelderman 和 Molenaar 所发现的,由于潜在的异质性,因子得分的估计可靠性低于预期。本文所考虑的特定人员模型基本上是具有多层次、混合或差异项目功能结构的 IRT 模型的限制性案例。最后,我们对现实世界中的异质性来源进行了一些思考,这些异质性可能在普通测试应用中没有被认识到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信