Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate "map" plus a brief discussion of the alternative infrasound direction-finding hypothesis.
{"title":"Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate \"map\" plus a brief discussion of the alternative infrasound direction-finding hypothesis.","authors":"Jonathan T Hagstrum","doi":"10.1007/s00359-023-01627-9","DOIUrl":null,"url":null,"abstract":"<p><p>The geomagnetic field (GMF) is a worldwide source of compass cues used by animals and humans alike. The inclination of GMF flux lines also provides information on geomagnetic latitude. A long-disputed question, however, is whether horizontal gradients in GMF intensity, in combination with changes in inclination, provide bicoordinate \"map\" information. Multiple sources contribute to the total GMF, the largest of which is the core field. The ubiquitous crustal field is much less intense, but in both land and marine settings is strong enough at low altitudes (< 700 m; sea level) to mask the core field's weak N-S intensity gradient (~ 3-5 nT/km) over 10 s to 100 s of km. Non-orthogonal geomagnetic gradients, the lack of consistent E-W gradients, and the local masking of core-field intensity gradients by the crustal field, therefore, are grounds for rejection of the bicoordinate geomagnetic \"map\" hypothesis. In addition, the alternative infrasound direction-finding hypothesis is briefly reviewed. The GMF's diurnal variation has long been suggested as a possible Zeitgeber (timekeeper) for circadian rhythms and could explain the GMF's non-compass role in the avian navigational system. Requirements for detection of this weaker diurnal signal (~ 20-50 nT) might explain the magnetic alignment of resting and grazing animals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01627-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The geomagnetic field (GMF) is a worldwide source of compass cues used by animals and humans alike. The inclination of GMF flux lines also provides information on geomagnetic latitude. A long-disputed question, however, is whether horizontal gradients in GMF intensity, in combination with changes in inclination, provide bicoordinate "map" information. Multiple sources contribute to the total GMF, the largest of which is the core field. The ubiquitous crustal field is much less intense, but in both land and marine settings is strong enough at low altitudes (< 700 m; sea level) to mask the core field's weak N-S intensity gradient (~ 3-5 nT/km) over 10 s to 100 s of km. Non-orthogonal geomagnetic gradients, the lack of consistent E-W gradients, and the local masking of core-field intensity gradients by the crustal field, therefore, are grounds for rejection of the bicoordinate geomagnetic "map" hypothesis. In addition, the alternative infrasound direction-finding hypothesis is briefly reviewed. The GMF's diurnal variation has long been suggested as a possible Zeitgeber (timekeeper) for circadian rhythms and could explain the GMF's non-compass role in the avian navigational system. Requirements for detection of this weaker diurnal signal (~ 20-50 nT) might explain the magnetic alignment of resting and grazing animals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.