Alternative splicing: An efficient regulatory approach towards plant developmental plasticity.

IF 6.4 2区 生物学 Q1 CELL BIOLOGY
Sajid Muhammad, Xiaoli Xu, Weijun Zhou, Liang Wu
{"title":"Alternative splicing: An efficient regulatory approach towards plant developmental plasticity.","authors":"Sajid Muhammad,&nbsp;Xiaoli Xu,&nbsp;Weijun Zhou,&nbsp;Liang Wu","doi":"10.1002/wrna.1758","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1758","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.

选择性剪接:植物发育可塑性的有效调控途径。
选择性剪接(Alternative splicing, AS)是植物通过多种途径调节基因表达的一种基因调控机制。AS在不同的发育和环境刺激下产生相同基因的不同亚型,增加转录组的可塑性和蛋白质组的复杂性。AS控制某些基因的表达水平,并调节通过无义介导的衰变(NMD)塑造植物适应性的GE网络。这篇综述旨在讨论AS的调节,从与非编码rna的相互作用到剪接因子(SFs)响应内源性和外源性信号的既定作用。当AS在个体基因和全球水平上增加时,我们的目标是收集这样的研究,突出AS的规模和影响,这在个别文章中并不总是清晰的。这项工作还期望使植物研究人员知道在他们的研究中可能发生AS,并且必须经常考虑AS的动态变化及其影响。我们还回顾了我们对as介导的植物抗逆性转录后调控的理解,并讨论了其在未来作物改良中的潜在应用。本文分类如下:RNA加工>剪接调控/选择性剪接RNA加工>剪接机制RNA催化>剪接和翻译中的RNA催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信