Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tianyi Lu, Shuwei Li, Liuquan Sun
{"title":"Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data.","authors":"Tianyi Lu,&nbsp;Shuwei Li,&nbsp;Liuquan Sun","doi":"10.1007/s10985-023-09596-6","DOIUrl":null,"url":null,"abstract":"<p><p>Interval-censored failure time data arise commonly in various scientific studies where the failure time of interest is only known to lie in a certain time interval rather than observed exactly. In addition, left truncation on the failure event may occur and can greatly complicate the statistical analysis. In this paper, we investigate regression analysis of left-truncated and interval-censored data with the commonly used additive hazards model. Specifically, we propose a conditional estimating equation approach for the estimation, and further improve its estimation efficiency by combining the conditional estimating equation and the pairwise pseudo-score-based estimating equation that can eliminate the nuisance functions from the marginal likelihood of the truncation times. Asymptotic properties of the proposed estimators are discussed including the consistency and asymptotic normality. Extensive simulation studies are conducted to evaluate the empirical performance of the proposed methods, and suggest that the combined estimating equation approach is obviously more efficient than the conditional estimating equation approach. We then apply the proposed methods to a set of real data for illustration.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"29 3","pages":"672-697"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09596-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

Interval-censored failure time data arise commonly in various scientific studies where the failure time of interest is only known to lie in a certain time interval rather than observed exactly. In addition, left truncation on the failure event may occur and can greatly complicate the statistical analysis. In this paper, we investigate regression analysis of left-truncated and interval-censored data with the commonly used additive hazards model. Specifically, we propose a conditional estimating equation approach for the estimation, and further improve its estimation efficiency by combining the conditional estimating equation and the pairwise pseudo-score-based estimating equation that can eliminate the nuisance functions from the marginal likelihood of the truncation times. Asymptotic properties of the proposed estimators are discussed including the consistency and asymptotic normality. Extensive simulation studies are conducted to evaluate the empirical performance of the proposed methods, and suggest that the combined estimating equation approach is obviously more efficient than the conditional estimating equation approach. We then apply the proposed methods to a set of real data for illustration.

左截距和区间截距数据加性危害模型的联合估计方程方法。
间隔截尾失效时间数据通常出现在各种科学研究中,其中所关心的失效时间仅已知位于某个时间间隔内,而不是精确地观察到。此外,故障事件可能出现左截断,使统计分析变得非常复杂。本文研究了用常用的加性风险模型对左截尾和区间截尾数据的回归分析。具体来说,我们提出了一种条件估计方程的估计方法,并将条件估计方程与基于两两伪分数的估计方程相结合,进一步提高了其估计效率,从而消除了截断时间边际似然的干扰函数。讨论了所提估计量的渐近性质,包括相合性和渐近正态性。通过大量的仿真研究来评估所提出方法的经验性能,并表明组合估计方程方法明显比条件估计方程方法更有效。然后,我们将所提出的方法应用于一组实际数据进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信