Luka Crnošija , Ivan Adamec , Magdalena Krbot Skorić , Mario Habek
{"title":"How to explore and explain autonomic changes in multiple sclerosis","authors":"Luka Crnošija , Ivan Adamec , Magdalena Krbot Skorić , Mario Habek","doi":"10.1016/j.neucli.2023.102854","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomic dysfunction (AD) in people with MS (pwMS) is a frequent finding. This narrative review will present an overview of central neural mechanisms involved in the control of cardiovascular and thermoregulatory systems, and methods of autonomic nervous system testing will be discussed thereafter. Since the need for standardization of autonomic nervous system (ANS) testing, we will focus on the standard battery of tests (blood pressure and heart rate response to Valsalva maneuver and head-up tilt, and heart rate response to deep breathing test plus one of the tests for sudomotor function), which can detect ANS pathology in the majority of pwMS. The review will briefly discuss the other types of AD in pwMS and the use of appropriate tests. While performing ANS testing in pwMS one has to consider the multiple sclerosis phenotypes, disease duration, and its activity, the degree of clinical disability of patients included in the study, and the disease-modifying therapies taken, as these factors may have a great influence on the results of ANS testing. In other words, detailed patient characteristics presentation and patient stratification are beneficial when reporting results of ANS testing in pwMS.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"53 2","pages":"Article 102854"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705323000114","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Autonomic dysfunction (AD) in people with MS (pwMS) is a frequent finding. This narrative review will present an overview of central neural mechanisms involved in the control of cardiovascular and thermoregulatory systems, and methods of autonomic nervous system testing will be discussed thereafter. Since the need for standardization of autonomic nervous system (ANS) testing, we will focus on the standard battery of tests (blood pressure and heart rate response to Valsalva maneuver and head-up tilt, and heart rate response to deep breathing test plus one of the tests for sudomotor function), which can detect ANS pathology in the majority of pwMS. The review will briefly discuss the other types of AD in pwMS and the use of appropriate tests. While performing ANS testing in pwMS one has to consider the multiple sclerosis phenotypes, disease duration, and its activity, the degree of clinical disability of patients included in the study, and the disease-modifying therapies taken, as these factors may have a great influence on the results of ANS testing. In other words, detailed patient characteristics presentation and patient stratification are beneficial when reporting results of ANS testing in pwMS.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.