{"title":"Regioselective synthesis and molecular docking studies of functionalized imidazo [1,2-a]pyridine derivatives through MCRs","authors":"Maruti B. Yadav, Pooja Singh, Yeon Tae Jeong","doi":"10.1007/s11030-023-10669-9","DOIUrl":null,"url":null,"abstract":"<div><p>\nA efficient protocol has been developed for the synthesis of regioselective imidazo[1,2-<i>a</i>]pyridine and imidazo[1,2-<i>a</i>]pyrimidine derivatives through cascade reaction between 2-aminopyridine, arylelglyoxal, and 4-hydroxypyran via three-component reaction to prepare targeted compounds with good to excellent yields. The advantages of this transformation are a catalyst-free reaction, green solvent, operationally simple, scalable, and eco-friendly. The product collects with simple filtration which avoided tedious and expensive purification techniques. In addition, computational studies like molecular docking were conducted to provide the theoretical possibilities of binding these types of synthesized compounds to the VEGFR2 receptors as potential key inhibitors of tumor cell growth and angiogenesis.</p></div>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":"28 1","pages":"171 - 182"},"PeriodicalIF":3.9000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11030-023-10669-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A efficient protocol has been developed for the synthesis of regioselective imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives through cascade reaction between 2-aminopyridine, arylelglyoxal, and 4-hydroxypyran via three-component reaction to prepare targeted compounds with good to excellent yields. The advantages of this transformation are a catalyst-free reaction, green solvent, operationally simple, scalable, and eco-friendly. The product collects with simple filtration which avoided tedious and expensive purification techniques. In addition, computational studies like molecular docking were conducted to provide the theoretical possibilities of binding these types of synthesized compounds to the VEGFR2 receptors as potential key inhibitors of tumor cell growth and angiogenesis.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;