A comprehensive history of motility and Archaellation in Archaea.

FEMS microbes Pub Date : 2021-04-08 eCollection Date: 2021-01-01 DOI:10.1093/femsmc/xtab002
Ken F Jarrell, Sonja-Verena Albers, J Nuno de Sousa Machado
{"title":"A comprehensive history of motility and Archaellation in Archaea.","authors":"Ken F Jarrell, Sonja-Verena Albers, J Nuno de Sousa Machado","doi":"10.1093/femsmc/xtab002","DOIUrl":null,"url":null,"abstract":"<p><p>Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby <i>et al</i>. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"2 ","pages":"xtab002"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/dd/xtab002.PMC10117864.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtab002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.

Abstract Image

Abstract Image

Abstract Image

古细菌运动和古细菌分裂的全面历史。
真核生物、细菌和古细菌这三个生命领域中的每一个都有游泳结构,这些结构最初都被称为鞭毛,尽管它们在进化过程中都与其他两个领域无关。令人惊讶的是,即使在细菌和古细菌这两个原核生物领域也是如此。从 20 世纪 80 年代开始,逐渐积累的证据令人信服地证明,古细菌的运动细胞器与细菌中的运动细胞器无关,但却与 IV 型纤毛虫有着惊人的相似之处。这些信息最终促使人们在 2012 年提议将 "古鞭毛 "命名为 "古细 胞"。在这篇综述中,我们概述了古细菌和古细菌运动性研究的历史,从一个世纪前首次对极端嗜卤古细菌运动性的简单观察开始,一直到今天观察到的古细菌运动复合体和细丝的最先进低温层析成像技术。除了结构和生化数据揭示了弓形体是一种被重新用作旋转纳米机械的 IV 型柔毛状结构(Beeby et al.2020),我们还回顾了最初的发现和随后的进展,这些发现和进展采用了多种方法来揭示:导致弓形虫丝组装(弓形)的复杂调控事件;各种弓形虫蛋白的作用;弓形虫结构亚基的关键翻译后修饰;进化关系;弓形虫除运动之外的功能以及这种迷人结构的生物技术潜力。通过将早期模型与当今已知模型进行比较,重点介绍了在了解弓形体结构和组装方面取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信