Deimmunization of flagellin adjuvant for clinical application

IF 5.7 2区 医学 Q1 VIROLOGY
Joon Haeng Rhee , Koemchhoy Khim , Sao Puth , Yoonjoo Choi , Shee Eun Lee
{"title":"Deimmunization of flagellin adjuvant for clinical application","authors":"Joon Haeng Rhee ,&nbsp;Koemchhoy Khim ,&nbsp;Sao Puth ,&nbsp;Yoonjoo Choi ,&nbsp;Shee Eun Lee","doi":"10.1016/j.coviro.2023.101330","DOIUrl":null,"url":null,"abstract":"<div><p>Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"60 ","pages":"Article 101330"},"PeriodicalIF":5.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625723000305","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.

鞭毛蛋白佐剂的临床脱免疫研究
Flagellin是宿主模式识别受体、细胞表面toll样受体5(TLR5)和胞质溶胶中NAIP5/NLRC4炎症小体的同源配体。TLR5结合结构域位于D1结构域,在不同的细菌中,关键的氨基酸序列是保守的。鞭毛蛋白的高度保守的C末端35个氨基酸被证明是通过与NAIP5结合来激活炎症小体的原因。D2/D3结构域位于中心区域,暴露于鞭毛丝的外表面,在细菌物种中是异质的,并且具有高度的免疫原性。鞭毛蛋白利用TLR5-和NLRC4的刺激活性,被积极开发为疫苗佐剂和免疫治疗剂。由于其免疫原性,存在对重复给药后疗效降低和可能的反应原性的担忧。鞭毛蛋白衍生物的去免疫同时保留TLR5/NLRC4介导的免疫调节活性应该是临床应用中最合理的选择。这篇综述介绍了鞭毛蛋白去免疫的策略和目前的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
5.10%
发文量
76
审稿时长
83 days
期刊介绍: Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信