Spectral Decomposition of Discrepancy Kernels on the Euclidean Ball, the Special Orthogonal Group, and the Grassmannian Manifold.

IF 2.3 2区 数学 Q1 MATHEMATICS
Constructive Approximation Pub Date : 2023-01-01 Epub Date: 2023-04-07 DOI:10.1007/s00365-023-09638-0
Josef Dick, Martin Ehler, Manuel Gräf, Christian Krattenthaler
{"title":"Spectral Decomposition of Discrepancy Kernels on the Euclidean Ball, the Special Orthogonal Group, and the Grassmannian Manifold.","authors":"Josef Dick,&nbsp;Martin Ehler,&nbsp;Manuel Gräf,&nbsp;Christian Krattenthaler","doi":"10.1007/s00365-023-09638-0","DOIUrl":null,"url":null,"abstract":"<p><p>To numerically approximate Borel probability measures by finite atomic measures, we study the spectral decomposition of discrepancy kernels when restricted to compact subsets of <math><msup><mrow><mi>R</mi></mrow><mi>d</mi></msup></math>. For restrictions to the Euclidean ball in odd dimensions, to the rotation group <math><mrow><mtext>SO</mtext><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math>, and to the Grassmannian manifold <math><msub><mi>G</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></math>, we compute the kernels' Fourier coefficients and determine their asymptotics. The <math><msub><mi>L</mi><mn>2</mn></msub></math>-discrepancy is then expressed in the Fourier domain that enables efficient numerical minimization based on the nonequispaced fast Fourier transform. For <math><mrow><mtext>SO</mtext><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math>, the nonequispaced fast Fourier transform is publicly available, and, for <math><msub><mi>G</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></math>, the transform is derived here. We also provide numerical experiments for <math><mrow><mtext>SO</mtext><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math> and <math><msub><mi>G</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></math>.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"57 3","pages":"983-1026"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264311/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09638-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

To numerically approximate Borel probability measures by finite atomic measures, we study the spectral decomposition of discrepancy kernels when restricted to compact subsets of Rd. For restrictions to the Euclidean ball in odd dimensions, to the rotation group SO(3), and to the Grassmannian manifold G2,4, we compute the kernels' Fourier coefficients and determine their asymptotics. The L2-discrepancy is then expressed in the Fourier domain that enables efficient numerical minimization based on the nonequispaced fast Fourier transform. For SO(3), the nonequispaced fast Fourier transform is publicly available, and, for G2,4, the transform is derived here. We also provide numerical experiments for SO(3) and G2,4.

Abstract Image

Abstract Image

Abstract Image

欧氏球、特殊正交群和Grassmannian流形上差异核的谱分解。
为了用有限原子测度在数值上近似Borel概率测度,我们研究了当限制在Rd的紧子集上时差异核的谱分解。对于奇维欧氏球、旋转群SO(3)和Grassmannian流形G2,4的限制,我们计算核的傅立叶系数并确定它们的渐近性。L2差异然后在傅立叶域中表示,这使得能够基于非等空间快速傅立叶变换进行有效的数值最小化。对于SO(3),非等空间快速傅立叶变换是公开可用的,并且对于G2,4,这里导出了变换。我们还提供了SO(3)和G2,4的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信