A ribosomal operon database and MegaBLAST settings for strain-level resolution of microbiomes.

Lee J Kerkhof, Pierce A Roth, Samir V Deshpande, R Cory Bernhards, Alvin T Liem, Jessica M Hill, Max M Häggblom, Nicole S Webster, Olufunmilola Ibironke, Seda Mirzoyan, James J Polashock, Raymond F Sullivan
{"title":"A ribosomal operon database and MegaBLAST settings for strain-level resolution of microbiomes.","authors":"Lee J Kerkhof,&nbsp;Pierce A Roth,&nbsp;Samir V Deshpande,&nbsp;R Cory Bernhards,&nbsp;Alvin T Liem,&nbsp;Jessica M Hill,&nbsp;Max M Häggblom,&nbsp;Nicole S Webster,&nbsp;Olufunmilola Ibironke,&nbsp;Seda Mirzoyan,&nbsp;James J Polashock,&nbsp;Raymond F Sullivan","doi":"10.1093/femsmc/xtac002","DOIUrl":null,"url":null,"abstract":"<p><p>Current methods to characterize microbial communities generally employ sequencing of the 16S rRNA gene (<500 bp) with high accuracy (∼99%) but limited phylogenetic resolution. However, long-read sequencing now allows for the profiling of near-full-length ribosomal operons (16S-ITS-23S rRNA genes) on platforms such as the Oxford Nanopore MinION. Here, we describe an rRNA operon database with >300 ,000 entries, representing >10 ,000 prokaryotic species and ∼ 150, 000 strains. Additionally, BLAST parameters were identified for strain-level resolution using <i>in silico</i> mutated, mock rRNA operon sequences (70-95% identity) from four bacterial phyla and two members of the Euryarchaeota, mimicking MinION reads. MegaBLAST settings were determined that required <3 s per read on a Mac Mini with strain-level resolution for sequences with >84% identity. These settings were tested on rRNA operon libraries from the human respiratory tract, farm/forest soils and marine sponges ( <i>n</i> = 1, 322, 818 reads for all sample sets). Most rRNA operon reads in this data set yielded best BLAST hits (95 ± 8%). However, only 38-82% of library reads were compatible with strain-level resolution, reflecting the dominance of human/biomedical-associated prokaryotic entries in the database. Since the MinION and the Mac Mini are both portable, this study demonstrates the possibility of rapid strain-level microbiome analysis in the field.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"3 ","pages":"xtac002"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117742/pdf/xtac002.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtac002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Current methods to characterize microbial communities generally employ sequencing of the 16S rRNA gene (<500 bp) with high accuracy (∼99%) but limited phylogenetic resolution. However, long-read sequencing now allows for the profiling of near-full-length ribosomal operons (16S-ITS-23S rRNA genes) on platforms such as the Oxford Nanopore MinION. Here, we describe an rRNA operon database with >300 ,000 entries, representing >10 ,000 prokaryotic species and ∼ 150, 000 strains. Additionally, BLAST parameters were identified for strain-level resolution using in silico mutated, mock rRNA operon sequences (70-95% identity) from four bacterial phyla and two members of the Euryarchaeota, mimicking MinION reads. MegaBLAST settings were determined that required <3 s per read on a Mac Mini with strain-level resolution for sequences with >84% identity. These settings were tested on rRNA operon libraries from the human respiratory tract, farm/forest soils and marine sponges ( n = 1, 322, 818 reads for all sample sets). Most rRNA operon reads in this data set yielded best BLAST hits (95 ± 8%). However, only 38-82% of library reads were compatible with strain-level resolution, reflecting the dominance of human/biomedical-associated prokaryotic entries in the database. Since the MinION and the Mac Mini are both portable, this study demonstrates the possibility of rapid strain-level microbiome analysis in the field.

Abstract Image

核糖体操纵子数据库和微生物组菌株水平分辨率的MegaBLAST设置。
目前表征微生物群落的方法通常采用16S rRNA基因测序(30万个条目,代表了>1万个原核物种和~ 15万个菌株)。此外,利用来自4个细菌门和2个Euryarchaeota成员的硅突变的模拟rRNA操纵子序列(70-95%的一致性),模拟MinION reads,确定BLAST参数以达到菌株水平的分辨率。确定MegaBLAST设置需要84%的标识。这些设置在来自人类呼吸道、农场/森林土壤和海洋海绵的rRNA操纵子文库上进行了测试(所有样本集的n = 1,322,818个读数)。在这个数据集中,大多数rRNA操纵子读取产生了最好的BLAST命中率(95±8%)。然而,只有38-82%的文库读数与菌株水平分辨率兼容,反映了数据库中与人类/生物医学相关的原核生物条目的优势。由于MinION和Mac Mini都是便携式的,本研究证明了在现场进行快速菌株水平微生物组分析的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信