Peiran Shi, Jiabin Ma, Ming Liu, Shaoke Guo, Yanfei Huang, Shuwei Wang, Lihan Zhang, Likun Chen, Ke Yang, Xiaotong Liu, Yuhang Li, Xufei An, Danfeng Zhang, Xing Cheng, Qidong Li, Wei Lv, Guiming Zhong, Yan-Bing He, Feiyu Kang
{"title":"A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries","authors":"Peiran Shi, Jiabin Ma, Ming Liu, Shaoke Guo, Yanfei Huang, Shuwei Wang, Lihan Zhang, Likun Chen, Ke Yang, Xiaotong Liu, Yuhang Li, Xufei An, Danfeng Zhang, Xing Cheng, Qidong Li, Wei Lv, Guiming Zhong, Yan-Bing He, Feiyu Kang","doi":"10.1038/s41565-023-01341-2","DOIUrl":null,"url":null,"abstract":"The ionic conductivity of composite solid-state electrolytes does not meet the application requirements of solid-state lithium (Li) metal batteries owing to the harsh space charge layer of different phases and low concentration of movable Li+. Herein, we propose a robust strategy for creating high-throughput Li+ transport pathways by coupling the ceramic dielectric and electrolyte to overcome the low ionic conductivity challenge of composite solid-state electrolytes. A highly conductive and dielectric composite solid-state electrolyte is constructed by compositing the poly(vinylidene difluoride) matrix and the BaTiO3–Li0.33La0.56TiO3–x nanowires with a side-by-side heterojunction structure (PVBL). The polarized dielectric BaTiO3 greatly promotes the dissociation of Li salt to produce more movable Li+, which locally and spontaneously transfers across the interface to coupled Li0.33La0.56TiO3–x for highly efficient transport. The BaTiO3–Li0.33La0.56TiO3–x effectively restrains the formation of the space charge layer with poly(vinylidene difluoride). These coupling effects contribute to a quite high ionic conductivity (8.2 × 10−4 S cm−1) and lithium transference number (0.57) of the PVBL at 25 °C. The PVBL also homogenizes the interfacial electric field with electrodes. The LiNi0.8Co0.1Mn0.1O2/PVBL/Li solid-state batteries stably cycle 1,500 times at a current density of 180 mA g−1, and pouch batteries also exhibit an excellent electrochemical and safety performance. The authors developed a highly conductive and dielectric composite solid-state electrolyte by coupling BaTiO3 and Li0.33La0.56TiO3–x nanowires with a side-by-side heterojunction structure in a polyvinylidene difluoride matrix, which simultaneously promotes the dissociation of lithium salts to produce more movable Li ions and efficiently transports the generated movable Li ions.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 6","pages":"602-610"},"PeriodicalIF":34.9000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01341-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 35
Abstract
The ionic conductivity of composite solid-state electrolytes does not meet the application requirements of solid-state lithium (Li) metal batteries owing to the harsh space charge layer of different phases and low concentration of movable Li+. Herein, we propose a robust strategy for creating high-throughput Li+ transport pathways by coupling the ceramic dielectric and electrolyte to overcome the low ionic conductivity challenge of composite solid-state electrolytes. A highly conductive and dielectric composite solid-state electrolyte is constructed by compositing the poly(vinylidene difluoride) matrix and the BaTiO3–Li0.33La0.56TiO3–x nanowires with a side-by-side heterojunction structure (PVBL). The polarized dielectric BaTiO3 greatly promotes the dissociation of Li salt to produce more movable Li+, which locally and spontaneously transfers across the interface to coupled Li0.33La0.56TiO3–x for highly efficient transport. The BaTiO3–Li0.33La0.56TiO3–x effectively restrains the formation of the space charge layer with poly(vinylidene difluoride). These coupling effects contribute to a quite high ionic conductivity (8.2 × 10−4 S cm−1) and lithium transference number (0.57) of the PVBL at 25 °C. The PVBL also homogenizes the interfacial electric field with electrodes. The LiNi0.8Co0.1Mn0.1O2/PVBL/Li solid-state batteries stably cycle 1,500 times at a current density of 180 mA g−1, and pouch batteries also exhibit an excellent electrochemical and safety performance. The authors developed a highly conductive and dielectric composite solid-state electrolyte by coupling BaTiO3 and Li0.33La0.56TiO3–x nanowires with a side-by-side heterojunction structure in a polyvinylidene difluoride matrix, which simultaneously promotes the dissociation of lithium salts to produce more movable Li ions and efficiently transports the generated movable Li ions.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.