Magnetic Liquid Metal Droplet Robot with Multifunction and High Output Force in Milli-Newton.

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2023-12-01 Epub Date: 2023-06-16 DOI:10.1089/soro.2022.0183
Peiran Zhao, Liang Yan, Xiaoshan Gao
{"title":"Magnetic Liquid Metal Droplet Robot with Multifunction and High Output Force in Milli-Newton.","authors":"Peiran Zhao, Liang Yan, Xiaoshan Gao","doi":"10.1089/soro.2022.0183","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetically actuated miniature robots have immeasurable potential in lab-on-a-chip and biomedical due to their ability to navigate in constrained space. However, current soft robots made by elastomers have limited functionalities and are prevented from very narrow environments such as channel much smaller than their size because of their non- or limited deformability. In this study, a soft and multifunctional robot based on liquid metal (magnetic liquid-metal droplet robot [MLDR]) with high output force is reported. It is fabricated by engulfing iron particles into a Galinstan droplet. By changing the shape and motion of permanent magnets, the MLDR can be reshaped and moved. The MLDR can also be split in batches and merged efficiently. It shows good softness and flexibility when navigating freely in a narrow channel, and thus can pass through a confined space smaller than its size easily. Furthermore, the MLDR can also push and spread the accumulated liquid in a desired path, and manipulate the motions of small objects well. Benefiting from the solidification-like phenomenon, an MLDR can output milli-Newton-level force much higher than the output force of ferrofluid droplet robots in micro-Newton level. The demonstrated capabilities of the MLDR are promising for the applications in lab-on-a-chip or biomedical devices.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1146-1158"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0183","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetically actuated miniature robots have immeasurable potential in lab-on-a-chip and biomedical due to their ability to navigate in constrained space. However, current soft robots made by elastomers have limited functionalities and are prevented from very narrow environments such as channel much smaller than their size because of their non- or limited deformability. In this study, a soft and multifunctional robot based on liquid metal (magnetic liquid-metal droplet robot [MLDR]) with high output force is reported. It is fabricated by engulfing iron particles into a Galinstan droplet. By changing the shape and motion of permanent magnets, the MLDR can be reshaped and moved. The MLDR can also be split in batches and merged efficiently. It shows good softness and flexibility when navigating freely in a narrow channel, and thus can pass through a confined space smaller than its size easily. Furthermore, the MLDR can also push and spread the accumulated liquid in a desired path, and manipulate the motions of small objects well. Benefiting from the solidification-like phenomenon, an MLDR can output milli-Newton-level force much higher than the output force of ferrofluid droplet robots in micro-Newton level. The demonstrated capabilities of the MLDR are promising for the applications in lab-on-a-chip or biomedical devices.

多功能高输出力毫牛顿磁性液态金属液滴机器人。
磁驱动微型机器人具有在有限空间内导航的能力,在芯片实验室和生物医学领域具有不可估量的潜力。然而,目前由弹性体制成的软体机器人功能有限,并且由于其非或有限的可变形性,无法在非常狭窄的环境中使用,例如比其尺寸小得多的通道。本研究报道了一种基于液态金属的高输出力柔性多功能机器人(磁性液态金属液滴机器人[MLDR])。它是通过将铁颗粒吞没到加林斯坦液滴中来制造的。通过改变永磁体的形状和运动,MLDR可以被重塑和移动。MLDR还可以分批拆分和高效合并。它在狭窄的航道中自由航行时表现出良好的柔软性和灵活性,因此可以轻松通过比其尺寸更小的密闭空间。此外,MLDR还可以将积累的液体按期望的路径推进和扩散,并能很好地控制小物体的运动。利用类似凝固的现象,MLDR的输出力远高于铁磁流体液滴机器人的微牛顿输出力。MLDR所展示的能力有望应用于芯片实验室或生物医学设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信