Loss of GLTSCR1 causes congenital heart defects by regulating NPPA transcription

IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE
Fengyan Han, Beibei Yang, Yan Chen, Lu Liu, Xiaoqing Cheng, Jiaqi Huang, Ke Zhou, Dandan Zhang, Enping Xu, Maode Lai, Bingjian Lv, Hongqiang Cheng, Honghe Zhang
{"title":"Loss of GLTSCR1 causes congenital heart defects by regulating NPPA transcription","authors":"Fengyan Han,&nbsp;Beibei Yang,&nbsp;Yan Chen,&nbsp;Lu Liu,&nbsp;Xiaoqing Cheng,&nbsp;Jiaqi Huang,&nbsp;Ke Zhou,&nbsp;Dandan Zhang,&nbsp;Enping Xu,&nbsp;Maode Lai,&nbsp;Bingjian Lv,&nbsp;Hongqiang Cheng,&nbsp;Honghe Zhang","doi":"10.1007/s10456-023-09869-6","DOIUrl":null,"url":null,"abstract":"<div><p>Precise and specific spatiotemporal domains of gene expression regulation are critical for embryonic development. Recent studies have identified GLTSCR1 as a gene transcriptional elongation regulator in cancer research. However, the function of GLTSCR1, especially in embryonic development, remains poorly understood. Here, we found that GLTSCR1 was essential for cardiac development because Gltscr1 knockout (Gltscr1<sup>−/−</sup>) led to embryonic lethality in mice with severe congenital heart defects (CHDs). Ventricular septal defect and double outflow right ventricular were also observed in neural crest cells with conditional deletion of Gltscr1, which were associated with neonatal lethality in mice. Mechanistically, GLTSCR1 deletion promoted NPPA expression by coordinating the CHD risk G allele of rs56153133 in the NPPA enhancer and releasing the transcription factor ZNF740-binding site on the NPPA promoter. These findings demonstrated that GLTSCR1 acts as a candidate CHD-related gene.\n</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"26 2","pages":"217 - 232"},"PeriodicalIF":9.2000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10456-023-09869-6.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-023-09869-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 1

Abstract

Precise and specific spatiotemporal domains of gene expression regulation are critical for embryonic development. Recent studies have identified GLTSCR1 as a gene transcriptional elongation regulator in cancer research. However, the function of GLTSCR1, especially in embryonic development, remains poorly understood. Here, we found that GLTSCR1 was essential for cardiac development because Gltscr1 knockout (Gltscr1−/−) led to embryonic lethality in mice with severe congenital heart defects (CHDs). Ventricular septal defect and double outflow right ventricular were also observed in neural crest cells with conditional deletion of Gltscr1, which were associated with neonatal lethality in mice. Mechanistically, GLTSCR1 deletion promoted NPPA expression by coordinating the CHD risk G allele of rs56153133 in the NPPA enhancer and releasing the transcription factor ZNF740-binding site on the NPPA promoter. These findings demonstrated that GLTSCR1 acts as a candidate CHD-related gene.

Abstract Image

Abstract Image

Abstract Image

GLTSCR1缺失通过调节NPPA转录导致先天性心脏缺陷
精确和特异的基因表达调控时空域对胚胎发育至关重要。最近的研究已经确定GLTSCR1是癌症研究中的基因转录延长调节因子。然而,GLTSCR1的功能,尤其是在胚胎发育中的功能,仍然知之甚少。在这里,我们发现GLTSCR1对心脏发育至关重要,因为GLTSCR1敲除(GLTSCR1-−/−)会导致严重先天性心脏缺陷(CHD)小鼠的胚胎致死。在Gltscr1条件缺失的神经嵴细胞中也观察到室间隔缺损和右心室双流出,这与小鼠的新生儿死亡率有关。从机制上讲,GLTSCR1缺失通过协调NPPA增强子中rs56153133的CHD风险G等位基因并释放NPPA启动子上的转录因子ZNF740结合位点来促进NPPA的表达。这些发现表明GLTSCR1是一个候选的CHD相关基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angiogenesis
Angiogenesis PERIPHERAL VASCULAR DISEASE-
CiteScore
21.90
自引率
8.20%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信