Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaron Ilan
{"title":"Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks","authors":"Yaron Ilan","doi":"10.1016/j.pbiomolbio.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>The constrained disorder principle (CDP) defines systems based on their degree of disorder bounded by dynamic boundaries. The principle explains stochasticity in living and non-living systems. Denis Noble described the importance of stochasticity in biology, emphasizing stochastic processes at molecular, cellular, and higher levels in organisms as having a role beyond simple noise. The CDP and Noble's theories (NT) claim that biological systems use stochasticity. This paper presents the CDP and NT, discussing common notions and differences between the two theories. The paper presents the CDP-based concept of taking the disorder beyond its role in nature to correct malfunctions of systems and improve the efficiency of biological systems. The use of CDP-based algorithms embedded in second-generation artificial intelligence platforms is described. In summary, noise is inherent to complex systems and has a functional role. The CDP provides the option of using noise to improve functionality.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000378","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

The constrained disorder principle (CDP) defines systems based on their degree of disorder bounded by dynamic boundaries. The principle explains stochasticity in living and non-living systems. Denis Noble described the importance of stochasticity in biology, emphasizing stochastic processes at molecular, cellular, and higher levels in organisms as having a role beyond simple noise. The CDP and Noble's theories (NT) claim that biological systems use stochasticity. This paper presents the CDP and NT, discussing common notions and differences between the two theories. The paper presents the CDP-based concept of taking the disorder beyond its role in nature to correct malfunctions of systems and improve the efficiency of biological systems. The use of CDP-based algorithms embedded in second-generation artificial intelligence platforms is described. In summary, noise is inherent to complex systems and has a functional role. The CDP provides the option of using noise to improve functionality.

基于限制性紊乱原理的变异性是生物学过程的基础:超越生物学相关性和生理调控网络
约束无序原理(CDP)根据系统的无序度定义系统,该无序度由动态边界限定。该原理解释了生命系统和非生命系统的随机性。Denis Noble描述了随机性在生物学中的重要性,强调生物体中分子、细胞和更高水平的随机过程具有超越简单噪声的作用。CDP和Noble的理论(NT)声称生物系统使用随机性。本文介绍了CDP和NT,讨论了这两种理论的共同概念和区别。本文提出了基于CDP的概念,即将无序超越其在自然界中的作用,以纠正系统故障并提高生物系统的效率。介绍了基于CDP的算法在第二代人工智能平台中的应用。总之,噪声是复杂系统固有的,具有一定的功能作用。CDP提供了使用噪声来改进功能的选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信