Alexander Ochoa, Alyssa T. B. Hassinger, Matthew L. Holding, H. Lisle Gibbs
{"title":"Genetic characterization of potential venom resistance proteins in California ground squirrels (Otospermophilus beecheyi) using transcriptome analyses","authors":"Alexander Ochoa, Alyssa T. B. Hassinger, Matthew L. Holding, H. Lisle Gibbs","doi":"10.1002/jez.b.23145","DOIUrl":null,"url":null,"abstract":"<p>Understanding the molecular basis of adaptations in coevolving species requires identifying the genes that underlie reciprocally selected phenotypes, such as those involved in venom in snakes and resistance to the venom in their prey. In this regard, California ground squirrels (CGS; <i>Otospermophilus beecheyi</i>) are eaten by northern Pacific rattlesnakes (<i>Crotalus oreganus oreganus</i>), but individual squirrels may still show substantial resistance to venom and survive bites. A recent study using proteomics identified venom interactive proteins (VIPs) in the blood serum of CGS. These VIPs represent possible resistance proteins, but the sequences of genes encoding them are unknown despite the value of such data to molecular studies of coevolution. To address this issue, we analyzed a de novo assembled transcriptome from CGS liver tissue—where many plasma proteins are synthesized—and other tissues from this species. We then examined VIP sequences in terms of three characteristics that identify them as possible resistance proteins: evidence for positive selection, high liver expression, and nonsynonymous variation across CGS populations. Based on these characteristics, we identified five VIPs (i.e., α-2-macroglobulin, α-1-antitrypsin-like protein GS55-LT, apolipoprotein A-II, hibernation-associated plasma protein HP-20, and hibernation-associated plasma protein HP-27) as the most likely candidates for resistance proteins among VIPs identified to date. Four of these proteins have been previously implicated in conferring resistance to the venom in mammals, validating our approach. When combined with the detailed information available for rattlesnake venom proteins, these results set the stage for future work focused on understanding coevolutionary interactions at the molecular level between these species.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23145","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23145","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Understanding the molecular basis of adaptations in coevolving species requires identifying the genes that underlie reciprocally selected phenotypes, such as those involved in venom in snakes and resistance to the venom in their prey. In this regard, California ground squirrels (CGS; Otospermophilus beecheyi) are eaten by northern Pacific rattlesnakes (Crotalus oreganus oreganus), but individual squirrels may still show substantial resistance to venom and survive bites. A recent study using proteomics identified venom interactive proteins (VIPs) in the blood serum of CGS. These VIPs represent possible resistance proteins, but the sequences of genes encoding them are unknown despite the value of such data to molecular studies of coevolution. To address this issue, we analyzed a de novo assembled transcriptome from CGS liver tissue—where many plasma proteins are synthesized—and other tissues from this species. We then examined VIP sequences in terms of three characteristics that identify them as possible resistance proteins: evidence for positive selection, high liver expression, and nonsynonymous variation across CGS populations. Based on these characteristics, we identified five VIPs (i.e., α-2-macroglobulin, α-1-antitrypsin-like protein GS55-LT, apolipoprotein A-II, hibernation-associated plasma protein HP-20, and hibernation-associated plasma protein HP-27) as the most likely candidates for resistance proteins among VIPs identified to date. Four of these proteins have been previously implicated in conferring resistance to the venom in mammals, validating our approach. When combined with the detailed information available for rattlesnake venom proteins, these results set the stage for future work focused on understanding coevolutionary interactions at the molecular level between these species.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.