{"title":"Investigating non-inferiority or equivalence in time-to-event data under non-proportional hazards.","authors":"Kathrin Möllenhoff, Achim Tresch","doi":"10.1007/s10985-023-09589-5","DOIUrl":null,"url":null,"abstract":"<p><p>The classical approach to analyze time-to-event data, e.g. in clinical trials, is to fit Kaplan-Meier curves yielding the treatment effect as the hazard ratio between treatment groups. Afterwards, a log-rank test is commonly performed to investigate whether there is a difference in survival or, depending on additional covariates, a Cox proportional hazard model is used. However, in numerous trials these approaches fail due to the presence of non-proportional hazards, resulting in difficulties of interpreting the hazard ratio and a loss of power. When considering equivalence or non-inferiority trials, the commonly performed log-rank based tests are similarly affected by a violation of this assumption. Here we propose a parametric framework to assess equivalence or non-inferiority for survival data. We derive pointwise confidence bands for both, the hazard ratio and the difference of the survival curves. Further we propose a test procedure addressing non-inferiority and equivalence by directly comparing the survival functions at certain time points or over an entire range of time. Once the model's suitability is proven the method provides a noticeable power benefit, irrespectively of the shape of the hazard ratio. On the other hand, model selection should be carried out carefully as misspecification may cause type I error inflation in some situations. We investigate the robustness and demonstrate the advantages and disadvantages of the proposed methods by means of a simulation study. Finally, we demonstrate the validity of the methods by a clinical trial example.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"29 3","pages":"483-507"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258187/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09589-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
The classical approach to analyze time-to-event data, e.g. in clinical trials, is to fit Kaplan-Meier curves yielding the treatment effect as the hazard ratio between treatment groups. Afterwards, a log-rank test is commonly performed to investigate whether there is a difference in survival or, depending on additional covariates, a Cox proportional hazard model is used. However, in numerous trials these approaches fail due to the presence of non-proportional hazards, resulting in difficulties of interpreting the hazard ratio and a loss of power. When considering equivalence or non-inferiority trials, the commonly performed log-rank based tests are similarly affected by a violation of this assumption. Here we propose a parametric framework to assess equivalence or non-inferiority for survival data. We derive pointwise confidence bands for both, the hazard ratio and the difference of the survival curves. Further we propose a test procedure addressing non-inferiority and equivalence by directly comparing the survival functions at certain time points or over an entire range of time. Once the model's suitability is proven the method provides a noticeable power benefit, irrespectively of the shape of the hazard ratio. On the other hand, model selection should be carried out carefully as misspecification may cause type I error inflation in some situations. We investigate the robustness and demonstrate the advantages and disadvantages of the proposed methods by means of a simulation study. Finally, we demonstrate the validity of the methods by a clinical trial example.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.