{"title":"The role of quantum mechanics in cognition-based evolution","authors":"Perry Marshall","doi":"10.1016/j.pbiomolbio.2023.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>In 2021 I noted that in all information-based systems we understand, Cognition creates Code, which controls Chemical reactions. Known agents write software which controls hardware, and not the other way around. I proposed the same is true in all of biology. Though the textbook description of cause and effect in biology proposes the reverse, that Chemical reactions produce Code from which Cognition emerges, there are no examples in the literature demonstrating either step. A mathematical proof for the first step, cognition generating code, is based on Turing's halting problem. The second step, code controlling chemical reactions, is the role of the genetic code. Thus a central question in biology: What is the nature and source of cognition? In this paper I propose a relationship between biology and Quantum Mechanics (QM), hypothesizing that the same principle that enables an observer to collapse a wave function also grants biology its agency: the organism's ability to act on the world instead of merely being a passive recipient. Just as all living cells are cognitive (Shapiro 2021, 2007; McClintock 1984; Lyon 2015; Levin 2019; Pascal and Pross, 2022), I propose humans are quantum observers because we are made of cells and all cells are observers. This supports the century-old view that in QM, the observer does not merely record the event but plays a fundamental role in its outcome.The classical world is driven by laws, which are deductive; the quantum world is driven by choices, which are inductive. When the two are combined, they form the master feedback loop of perception and action for all biology. In this paper I apply basic definitions of induction, deduction and computation to known properties of QM to show that the organism altering itself (and its environment) is a whole shaping its parts. It is not merely parts comprising a whole. I propose that an observer collapsing the wave function is the physical mechanism for producing negentropy. The way forward in solving the information problem in biology is understanding the relationship between cognition and QM.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007961072300041X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In 2021 I noted that in all information-based systems we understand, Cognition creates Code, which controls Chemical reactions. Known agents write software which controls hardware, and not the other way around. I proposed the same is true in all of biology. Though the textbook description of cause and effect in biology proposes the reverse, that Chemical reactions produce Code from which Cognition emerges, there are no examples in the literature demonstrating either step. A mathematical proof for the first step, cognition generating code, is based on Turing's halting problem. The second step, code controlling chemical reactions, is the role of the genetic code. Thus a central question in biology: What is the nature and source of cognition? In this paper I propose a relationship between biology and Quantum Mechanics (QM), hypothesizing that the same principle that enables an observer to collapse a wave function also grants biology its agency: the organism's ability to act on the world instead of merely being a passive recipient. Just as all living cells are cognitive (Shapiro 2021, 2007; McClintock 1984; Lyon 2015; Levin 2019; Pascal and Pross, 2022), I propose humans are quantum observers because we are made of cells and all cells are observers. This supports the century-old view that in QM, the observer does not merely record the event but plays a fundamental role in its outcome.The classical world is driven by laws, which are deductive; the quantum world is driven by choices, which are inductive. When the two are combined, they form the master feedback loop of perception and action for all biology. In this paper I apply basic definitions of induction, deduction and computation to known properties of QM to show that the organism altering itself (and its environment) is a whole shaping its parts. It is not merely parts comprising a whole. I propose that an observer collapsing the wave function is the physical mechanism for producing negentropy. The way forward in solving the information problem in biology is understanding the relationship between cognition and QM.