{"title":"An evaluation of the effect of hydrofluoric acid (HF) treatment on keratins","authors":"Tao Zhao, Yanhong Pan","doi":"10.1002/jez.b.23173","DOIUrl":null,"url":null,"abstract":"<p>Hydrofluoric acid (HF) is commonly used in geological and paleontological research to extract organic fossils for morphological and chemical studies. However, during HF treatment, organic matter can also be altered, which raises concerns that HF-treated organic matter may not be representative of the original organic matter. To provide reference data for protein studies on fossils, herein, we use Fourier transform infrared (FTIR) spectroscopy to investigate the effect of HF (21.3 M) treatment on keratins, with treatment durations ranging from 2 to 48 h. Results show that the FTIR spectra of HF-treated samples are overall similar to that of the untreated sample, while curve fitting shows that HF treatment has led to alteration of the secondary structure in all the HF-treated samples and the effect is time-dependent. The 2- and 4-h treatment mainly reduced the content of the random coils, α-helix, and intermolecular β-sheet. From 8h onwards, the content of random coils greatly increased at the expense of other structures. Our results imply that for protein detection in fossils using FTIR spectroscopy, the negative effect of HF treatment is not substantial, as the bands characteristic of proteins, that is, amide A, amide B, amide I, amide II, and amide III, are still present after the 48-h treatment. If the target is a secondary structure, the effect of HF treatment should be considered. When HF treatment is necessary, limiting the treatment duration to less than 4h may be a choice.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23173","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrofluoric acid (HF) is commonly used in geological and paleontological research to extract organic fossils for morphological and chemical studies. However, during HF treatment, organic matter can also be altered, which raises concerns that HF-treated organic matter may not be representative of the original organic matter. To provide reference data for protein studies on fossils, herein, we use Fourier transform infrared (FTIR) spectroscopy to investigate the effect of HF (21.3 M) treatment on keratins, with treatment durations ranging from 2 to 48 h. Results show that the FTIR spectra of HF-treated samples are overall similar to that of the untreated sample, while curve fitting shows that HF treatment has led to alteration of the secondary structure in all the HF-treated samples and the effect is time-dependent. The 2- and 4-h treatment mainly reduced the content of the random coils, α-helix, and intermolecular β-sheet. From 8h onwards, the content of random coils greatly increased at the expense of other structures. Our results imply that for protein detection in fossils using FTIR spectroscopy, the negative effect of HF treatment is not substantial, as the bands characteristic of proteins, that is, amide A, amide B, amide I, amide II, and amide III, are still present after the 48-h treatment. If the target is a secondary structure, the effect of HF treatment should be considered. When HF treatment is necessary, limiting the treatment duration to less than 4h may be a choice.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.