{"title":"Evaluating acoustic and thermal properties of a plaque phantom.","authors":"Michalis Sotiriou, Christakis Damianou","doi":"10.1007/s40477-023-00778-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study is to evaluate the acoustic and thermal properties of a plaque phantom. This is very important for the effective implementation of ultrasound not only in diagnosis but especially in treatment for the future.</p><p><strong>Material and methods: </strong>An evaluation of acoustic and thermal properties of plaque phantoms to test their suitability mainly for ultrasound imaging and therapy was presented. The evaluation included measurements of the acoustic propagation speed using pulse-echo technique, ultrasonic attenuation coefficient using through transmission immersion technique, and absorption coefficient. Moreover, thermal properties (thermal conductivity, volumetric specific heat capacity and thermal diffusivity) were measured with the transient method using a needle probe.</p><p><strong>Results: </strong>It was shown that acoustic and thermal properties of atherosclerotic plaque phantoms fall well within the range of reported values for atherosclerotic plaque and slightly different for thermal diffusivity and volumetric specific heat capacity for soft tissues. The mean value of acoustic and thermal properties and their standard deviation of plaque phantoms were 1523 ± 23 m/s for acoustic speed, 0.50 ± 0.02 W/mK for thermal conductivity, 0.30 ± 0.21 db/cm-MHz for ultrasonic absorption coefficient and 1.63 ± 0.46 db/cm-MHz for ultrasonic attenuation coefficient.</p><p><strong>Conclusions: </strong>This study demonstrated that acoustic and thermal properties of atherosclerotic plaque phantoms were within the range of reported values. Future studies should be focused on the optimum recipe of the atherosclerotic plaque phantoms that mimics the human atherosclerotic plaque (agar 4% w/v, gypsum 10% w/v and butter 10% w/v) and can be used for HIFU therapy.</p>","PeriodicalId":51528,"journal":{"name":"Journal of Ultrasound","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333666/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40477-023-00778-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study is to evaluate the acoustic and thermal properties of a plaque phantom. This is very important for the effective implementation of ultrasound not only in diagnosis but especially in treatment for the future.
Material and methods: An evaluation of acoustic and thermal properties of plaque phantoms to test their suitability mainly for ultrasound imaging and therapy was presented. The evaluation included measurements of the acoustic propagation speed using pulse-echo technique, ultrasonic attenuation coefficient using through transmission immersion technique, and absorption coefficient. Moreover, thermal properties (thermal conductivity, volumetric specific heat capacity and thermal diffusivity) were measured with the transient method using a needle probe.
Results: It was shown that acoustic and thermal properties of atherosclerotic plaque phantoms fall well within the range of reported values for atherosclerotic plaque and slightly different for thermal diffusivity and volumetric specific heat capacity for soft tissues. The mean value of acoustic and thermal properties and their standard deviation of plaque phantoms were 1523 ± 23 m/s for acoustic speed, 0.50 ± 0.02 W/mK for thermal conductivity, 0.30 ± 0.21 db/cm-MHz for ultrasonic absorption coefficient and 1.63 ± 0.46 db/cm-MHz for ultrasonic attenuation coefficient.
Conclusions: This study demonstrated that acoustic and thermal properties of atherosclerotic plaque phantoms were within the range of reported values. Future studies should be focused on the optimum recipe of the atherosclerotic plaque phantoms that mimics the human atherosclerotic plaque (agar 4% w/v, gypsum 10% w/v and butter 10% w/v) and can be used for HIFU therapy.
期刊介绍:
The Journal of Ultrasound is the official journal of the Italian Society for Ultrasound in Medicine and Biology (SIUMB). The journal publishes original contributions (research and review articles, case reports, technical reports and letters to the editor) on significant advances in clinical diagnostic, interventional and therapeutic applications, clinical techniques, the physics, engineering and technology of ultrasound in medicine and biology, and in cross-sectional diagnostic imaging. The official language of Journal of Ultrasound is English.