Hydrogel-Based Multi-enzymatic System for Biosynthesis.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology
Han Wu, Bo Zheng
{"title":"Hydrogel-Based Multi-enzymatic System for Biosynthesis.","authors":"Han Wu,&nbsp;Bo Zheng","doi":"10.1007/10_2023_220","DOIUrl":null,"url":null,"abstract":"<p><p>Biosynthesis involving multi-enzymatic reactions is usually an efficient and economic method to produce plentiful important molecules. To increase the product yield in biosynthesis, the involved enzymes can be immobilized to carriers for enhancing enzyme stability, increasing synthesis efficiency and improving enzyme recyclability. Hydrogels with three-dimensional porous structures and versatile functional groups are promising carriers for enzyme immobilization. Herein, we review the recent advances of the hydrogel-based multi-enzymatic system for biosynthesis. First, we introduce the strategies of enzyme immobilization in hydrogel, including the pros and cons of the strategies. Then we overview the recent applications of the multi-enzymatic system for biosynthesis, including cell-free protein synthesis (CFPS) and non-protein synthesis, especially high value-added molecules. In the last section, we discuss the future perspective of the hydrogel-based multi-enzymatic system for biosynthesis.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"51-76"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2023_220","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Biosynthesis involving multi-enzymatic reactions is usually an efficient and economic method to produce plentiful important molecules. To increase the product yield in biosynthesis, the involved enzymes can be immobilized to carriers for enhancing enzyme stability, increasing synthesis efficiency and improving enzyme recyclability. Hydrogels with three-dimensional porous structures and versatile functional groups are promising carriers for enzyme immobilization. Herein, we review the recent advances of the hydrogel-based multi-enzymatic system for biosynthesis. First, we introduce the strategies of enzyme immobilization in hydrogel, including the pros and cons of the strategies. Then we overview the recent applications of the multi-enzymatic system for biosynthesis, including cell-free protein synthesis (CFPS) and non-protein synthesis, especially high value-added molecules. In the last section, we discuss the future perspective of the hydrogel-based multi-enzymatic system for biosynthesis.

基于水凝胶的多酶生物合成系统。
涉及多酶反应的生物合成通常是生产大量重要分子的有效且经济的方法。为了提高生物合成中的产物产量,可以将所涉及的酶固定在载体上,以增强酶的稳定性,提高合成效率并提高酶的可回收性。具有三维多孔结构和多功能基团的水凝胶是固定化酶的有前途的载体。在此,我们综述了基于水凝胶的多酶生物合成系统的最新进展。首先,我们介绍了水凝胶中酶固定化的策略,包括这些策略的优缺点。然后,我们概述了多酶系统在生物合成中的最新应用,包括无细胞蛋白质合成(CFPS)和非蛋白质合成,特别是高附加值分子。在最后一节中,我们讨论了基于水凝胶的多酶生物合成系统的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信