{"title":"Consistent and robust inference in hazard probability and odds models with discrete-time survival data.","authors":"Zhiqiang Tan","doi":"10.1007/s10985-022-09585-1","DOIUrl":null,"url":null,"abstract":"<p><p>For discrete-time survival data, conditional likelihood inference in Cox's hazard odds model is theoretically desirable but exact calculation is numerical intractable with a moderate to large number of tied events. Unconditional maximum likelihood estimation over both regression coefficients and baseline hazard probabilities can be problematic with a large number of time intervals. We develop new methods and theory using numerically simple estimating functions, along with model-based and model-robust variance estimation, in hazard probability and odds models. For the probability hazard model, we derive as a consistent estimator the Breslow-Peto estimator, previously known as an approximation to the conditional likelihood estimator in the hazard odds model. For the hazard odds model, we propose a weighted Mantel-Haenszel estimator, which satisfies conditional unbiasedness given the numbers of events in addition to the risk sets and covariates, similarly to the conditional likelihood estimator. Our methods are expected to perform satisfactorily in a broad range of settings, with small or large numbers of tied events corresponding to a large or small number of time intervals. The methods are implemented in the R package dSurvival.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09585-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
For discrete-time survival data, conditional likelihood inference in Cox's hazard odds model is theoretically desirable but exact calculation is numerical intractable with a moderate to large number of tied events. Unconditional maximum likelihood estimation over both regression coefficients and baseline hazard probabilities can be problematic with a large number of time intervals. We develop new methods and theory using numerically simple estimating functions, along with model-based and model-robust variance estimation, in hazard probability and odds models. For the probability hazard model, we derive as a consistent estimator the Breslow-Peto estimator, previously known as an approximation to the conditional likelihood estimator in the hazard odds model. For the hazard odds model, we propose a weighted Mantel-Haenszel estimator, which satisfies conditional unbiasedness given the numbers of events in addition to the risk sets and covariates, similarly to the conditional likelihood estimator. Our methods are expected to perform satisfactorily in a broad range of settings, with small or large numbers of tied events corresponding to a large or small number of time intervals. The methods are implemented in the R package dSurvival.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.