PI3K inhibition circumvents resistance to SHP2 blockade in metastatic triple-negative breast cancer.

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Romain J Amante, Charly Jehanno, Duvini De Silva, Marie-May Coissieux, Markus Ackerknecht, Vincent Romanet, Atul Sethi, Baptiste Hamelin, Bogdan-Tiberius Preca, Salvatore Piscuoglio, Charlotte K Y Ng, Morvarid Mohseni, Mohamed Bentires-Alj
{"title":"PI3K inhibition circumvents resistance to SHP2 blockade in metastatic triple-negative breast cancer.","authors":"Romain J Amante, Charly Jehanno, Duvini De Silva, Marie-May Coissieux, Markus Ackerknecht, Vincent Romanet, Atul Sethi, Baptiste Hamelin, Bogdan-Tiberius Preca, Salvatore Piscuoglio, Charlotte K Y Ng, Morvarid Mohseni, Mohamed Bentires-Alj","doi":"10.1007/s10911-023-09539-9","DOIUrl":null,"url":null,"abstract":"<p><p>The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies. When PI3K is inhibited, resistance also develops for example via activation of RTKs. We therefore assessed the effect of targeting PI3K and SHP2 alone or in combination in preclinical models of metastatic TNBC. In addition to the beneficial inhibitory effects of SHP2 alone, dual PI3K/SHP2 treatment decreased primary tumor growth synergistically, blocked the formation of lung metastases, and increased survival in preclinical models. Mechanistically, transcriptome and phospho-proteome analyses revealed that resistance to SHP2 inhibition is mediated by PDGFRβ-evoked activation of PI3K signaling. Altogether, our data provide a rationale for co-targeting of SHP2 and PI3K in metastatic TNBC.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256672/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-023-09539-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 1

Abstract

The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies. When PI3K is inhibited, resistance also develops for example via activation of RTKs. We therefore assessed the effect of targeting PI3K and SHP2 alone or in combination in preclinical models of metastatic TNBC. In addition to the beneficial inhibitory effects of SHP2 alone, dual PI3K/SHP2 treatment decreased primary tumor growth synergistically, blocked the formation of lung metastases, and increased survival in preclinical models. Mechanistically, transcriptome and phospho-proteome analyses revealed that resistance to SHP2 inhibition is mediated by PDGFRβ-evoked activation of PI3K signaling. Altogether, our data provide a rationale for co-targeting of SHP2 and PI3K in metastatic TNBC.

Abstract Image

PI3K 抑制剂可规避转移性三阴性乳腺癌对 SHP2 阻断剂的耐药性。
蛋白酪氨酸磷酸酶 SHP2 可激活大多数受体酪氨酸激酶 (RTK) 下游的致癌通路,并与多种癌症类型有关,包括侵袭性极强的三阴性乳腺癌 (TNBC) 亚型。虽然 SHP2 的异位抑制剂已经开发出来,目前正在临床试验中进行评估,但这些药物的抗药性机制和规避抗药性的方法都尚未明确。PI3K 信号通路在乳腺癌中也被过度激活,并导致对抗癌疗法的耐药性。当 PI3K 受到抑制时,也会产生耐药性,例如通过激活 RTKs 产生耐药性。因此,我们评估了在转移性 TNBC 临床前模型中单独或联合靶向 PI3K 和 SHP2 的效果。除了单独使用 SHP2 有益的抑制作用外,PI3K/SHP2 双重治疗还能协同降低原发性肿瘤的生长,阻止肺转移的形成,并提高临床前模型的存活率。从机理上讲,转录组和磷酸蛋白组分析表明,对 SHP2 抑制的抗性是由 PDGFRβ 引起的 PI3K 信号激活介导的。总之,我们的数据为在转移性 TNBC 中联合靶向 SHP2 和 PI3K 提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信