Ladderphane copolymers for high-temperature capacitive energy storage

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2023-03-01 DOI:10.1038/s41586-022-05671-4
Jie Chen, Yao Zhou, Xingyi Huang, Chunyang Yu, Donglin Han, Ao Wang, Yingke Zhu, Kunming Shi, Qi Kang, Pengli Li, Pingkai Jiang, Xiaoshi Qian, Hua Bao, Shengtao Li, Guangning Wu, Xinyuan Zhu, Qing Wang
{"title":"Ladderphane copolymers for high-temperature capacitive energy storage","authors":"Jie Chen, Yao Zhou, Xingyi Huang, Chunyang Yu, Donglin Han, Ao Wang, Yingke Zhu, Kunming Shi, Qi Kang, Pengli Li, Pingkai Jiang, Xiaoshi Qian, Hua Bao, Shengtao Li, Guangning Wu, Xinyuan Zhu, Qing Wang","doi":"10.1038/s41586-022-05671-4","DOIUrl":null,"url":null,"abstract":"For capacitive energy storage at elevated temperatures1–4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm−3 with a charge–discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π–π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m−1 K−1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions. A class of dielectric copolymers called ladderphanes is shown to outperform existing dielectric polymers and composites, with high discharged energy density and charge–discharge efficiency even at temperatures up to 200 °C.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"615 7950","pages":"62-66"},"PeriodicalIF":50.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-022-05671-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 25

Abstract

For capacitive energy storage at elevated temperatures1–4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm−3 with a charge–discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π–π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m−1 K−1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions. A class of dielectric copolymers called ladderphanes is shown to outperform existing dielectric polymers and composites, with high discharged energy density and charge–discharge efficiency even at temperatures up to 200 °C.

Abstract Image

高温电容储能用梯状共聚物。
对于高温下的电容储能1-4,需要介电聚合物将低导电性与高导热性结合起来。这些看似矛盾的性质的共存仍然是现有聚合物的持续挑战。我们在这里描述了一类梯状共聚物,在高电场和高温下,其电导率比现有聚合物低一个数量级以上。因此,梯子状共聚物的放电能量密度为5.34 J cm-3,在200°C下的充放电效率为90%,优于现有的介电聚合物和复合材料。梯子状共聚物通过π-π堆叠相互作用自组装成高度有序的阵列5,6,从而产生1.96±0.06 W m-1 K-1的固有通面热导率。共聚物薄膜的高导热性允许有效的焦耳散热,因此在高温和高电场下具有优异的循环稳定性。共聚物击穿自愈能力的证明进一步表明,梯子状结构在极端条件下工作的高能量密度聚合物电容器的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信