Design and Gesture Optimization of a Soft-Rigid Robotic Hand for Adaptive Grasping.

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Tianlei Wang, Wenhua Jiao, Zhenxing Sun, Xinghua Zhang
{"title":"Design and Gesture Optimization of a Soft-Rigid Robotic Hand for Adaptive Grasping.","authors":"Tianlei Wang,&nbsp;Wenhua Jiao,&nbsp;Zhenxing Sun,&nbsp;Xinghua Zhang","doi":"10.1089/soro.2021.0208","DOIUrl":null,"url":null,"abstract":"<p><p>Soft robotic hands are inherently safer and more compliant in robot-environment interaction than rigid manipulators, but their flexibility and versatility still need improving. In this article, a gesture adaptive soft-rigid robotic hand is proposed. The robotic hand has three pneumatic two-segment fingers. Each finger segment is driven independently for flexible gesture adjustment to match up with different object shapes. The palm is constructed by a rigid skeleton driven by a soft pneumatic spring. It provides a firm support, large workspace, and independent force control for the fingers. Geometry model of the robotic hand is established, based on which a grasping gesture optimization algorithm is adopted. The fingers achieve optimal contact with objects by performing maximal curving similarity with the object outlines. Experiment shows that the soft-rigid robotic hand provides adaptive and reliable grasping for objects of different sizes, shapes, and materials with optimized gestures.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0208","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Soft robotic hands are inherently safer and more compliant in robot-environment interaction than rigid manipulators, but their flexibility and versatility still need improving. In this article, a gesture adaptive soft-rigid robotic hand is proposed. The robotic hand has three pneumatic two-segment fingers. Each finger segment is driven independently for flexible gesture adjustment to match up with different object shapes. The palm is constructed by a rigid skeleton driven by a soft pneumatic spring. It provides a firm support, large workspace, and independent force control for the fingers. Geometry model of the robotic hand is established, based on which a grasping gesture optimization algorithm is adopted. The fingers achieve optimal contact with objects by performing maximal curving similarity with the object outlines. Experiment shows that the soft-rigid robotic hand provides adaptive and reliable grasping for objects of different sizes, shapes, and materials with optimized gestures.

自适应抓取软刚性机械手的设计与姿态优化。
与刚性机械臂相比,柔性机械臂本质上更安全,更适应机器人与环境的交互,但其灵活性和通用性仍有待提高。本文提出了一种姿态自适应软刚性机械手。机器人手有三个气动的两段式手指。每个手指段都是独立驱动的,可以灵活地调整手势,以匹配不同的物体形状。手掌由一个由软气动弹簧驱动的刚性骨架构成。它提供了一个坚实的支撑,大的工作空间,并独立的力控制手指。建立了机械手的几何模型,在此基础上采用了抓取手势优化算法。手指通过与物体轮廓的最大弯曲相似性来实现与物体的最佳接触。实验结果表明,软刚性机械手能够通过优化的手势对不同尺寸、形状和材料的物体进行自适应、可靠的抓取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信