Transcriptomic analysis of cave, surface, and hybrid samples of the isopod Asellus aquaticus and identification of chromosomal location of candidate genes for cave phenotype evolution.

IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Evodevo Pub Date : 2023-05-06 DOI:10.1186/s13227-023-00213-z
Haeli J Lomheim, Lizet Reyes Rodas, Lubna Mulla, Layla Freeborn, Dennis A Sun, Sheri A Sanders, Meredith E Protas
{"title":"Transcriptomic analysis of cave, surface, and hybrid samples of the isopod Asellus aquaticus and identification of chromosomal location of candidate genes for cave phenotype evolution.","authors":"Haeli J Lomheim,&nbsp;Lizet Reyes Rodas,&nbsp;Lubna Mulla,&nbsp;Layla Freeborn,&nbsp;Dennis A Sun,&nbsp;Sheri A Sanders,&nbsp;Meredith E Protas","doi":"10.1186/s13227-023-00213-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcriptomic methods can be used to elucidate genes and pathways responsible for phenotypic differences between populations. Asellus aquaticus is a freshwater isopod crustacean with surface- and cave-dwelling ecomorphs that differ greatly in multiple phenotypes including pigmentation and eye size. Multiple genetic resources have been generated for this species, but the genes and pathways responsible for cave-specific characteristics have not yet been identified. Our goal was to generate transcriptomic resources in tandem with taking advantage of the species' ability to interbreed and generate hybrid individuals.</p><p><strong>Results: </strong>We generated transcriptomes of the Rakov Škocjan surface population and the Rak Channel of Planina Cave population that combined Illumina short-read assemblies and PacBio Iso-seq long-read sequences. We investigated differential expression at two different embryonic time points as well as allele-specific expression of F<sub>1</sub> hybrids between cave and surface individuals. RNAseq of F<sub>2</sub> hybrids, as well as genotyping of a backcross, allowed for positional information of multiple candidate genes from the differential expression and allele-specific analyses.</p><p><strong>Conclusions: </strong>As expected, genes involved in phototransduction and ommochrome synthesis were under-expressed in the cave samples as compared to the surface samples. Allele-specific expression analysis of F<sub>1</sub> hybrids identified genes with cave-biased (cave allele has higher mRNA levels than the surface allele) and surface-biased expression (surface allele has higher mRNA levels than the cave allele). RNAseq of F<sub>2</sub> hybrids allowed for multiple genes to be placed to previously mapped genomic regions responsible for eye and pigmentation phenotypes. In the future, these transcriptomic resources will guide prioritization of candidates for functional analysis.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-023-00213-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Transcriptomic methods can be used to elucidate genes and pathways responsible for phenotypic differences between populations. Asellus aquaticus is a freshwater isopod crustacean with surface- and cave-dwelling ecomorphs that differ greatly in multiple phenotypes including pigmentation and eye size. Multiple genetic resources have been generated for this species, but the genes and pathways responsible for cave-specific characteristics have not yet been identified. Our goal was to generate transcriptomic resources in tandem with taking advantage of the species' ability to interbreed and generate hybrid individuals.

Results: We generated transcriptomes of the Rakov Škocjan surface population and the Rak Channel of Planina Cave population that combined Illumina short-read assemblies and PacBio Iso-seq long-read sequences. We investigated differential expression at two different embryonic time points as well as allele-specific expression of F1 hybrids between cave and surface individuals. RNAseq of F2 hybrids, as well as genotyping of a backcross, allowed for positional information of multiple candidate genes from the differential expression and allele-specific analyses.

Conclusions: As expected, genes involved in phototransduction and ommochrome synthesis were under-expressed in the cave samples as compared to the surface samples. Allele-specific expression analysis of F1 hybrids identified genes with cave-biased (cave allele has higher mRNA levels than the surface allele) and surface-biased expression (surface allele has higher mRNA levels than the cave allele). RNAseq of F2 hybrids allowed for multiple genes to be placed to previously mapped genomic regions responsible for eye and pigmentation phenotypes. In the future, these transcriptomic resources will guide prioritization of candidates for functional analysis.

Abstract Image

Abstract Image

Abstract Image

等足类水草洞穴、表面和杂交样本的转录组学分析及洞穴表型进化候选基因的染色体定位鉴定。
背景:转录组学方法可用于阐明导致种群间表型差异的基因和途径。阿塞勒斯是一种淡水等足类甲壳类动物,具有地表和穴居的生态形态,在多种表型(包括色素沉着和眼睛大小)上差异很大。该物种已经产生了多种遗传资源,但负责洞穴特异性特征的基因和途径尚未确定。我们的目标是在利用物种杂交和产生杂交个体的能力的同时产生转录组资源。结果:我们合成了Rakov Škocjan地表种群和Planina Cave种群的Rak Channel的转录组,结合了Illumina短读序列和PacBio isoseq长读序列。我们研究了F1杂交体在两个不同胚胎时间点的差异表达以及等位基因特异性表达。F2杂交的RNAseq以及回交的基因分型,可以从差异表达和等位基因特异性分析中获得多个候选基因的位置信息。结论:正如预期的那样,与表面样品相比,洞穴样品中参与光导和共色素合成的基因表达不足。等位基因特异性表达分析发现,F1杂交种存在洞穴偏态(洞穴等位基因mRNA水平高于表面等位基因)和表面偏态(表面等位基因mRNA水平高于洞穴等位基因)。F2杂交种的RNAseq允许将多个基因放置到先前绘制的负责眼睛和色素表型的基因组区域。在未来,这些转录组资源将指导候选功能分析的优先级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evodevo
Evodevo EVOLUTIONARY BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo. The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution. All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信