{"title":"Mammalian cell and tissue imaging using Raman and coherent Raman microscopy.","authors":"Anthony A Fung, Lingyan Shi","doi":"10.1002/wsbm.1501","DOIUrl":null,"url":null,"abstract":"<p><p>Direct imaging of metabolism in cells or multicellular organisms is important for understanding many biological processes. Raman scattering (RS) microscopy, particularly, coherent Raman scattering (CRS) such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), has emerged as a powerful platform for cellular imaging due to its high chemical selectivity, sensitivity, and imaging speed. RS microscopy has been extensively used for the identification of subcellular structures, metabolic observation, and phenotypic characterization. Conjugating RS modalities with other techniques such as fluorescence or infrared (IR) spectroscopy, flow cytometry, and RNA-sequencing can further extend the applications of RS imaging in microbiology, system biology, neurology, tumor biology and more. Here we overview RS modalities and techniques for mammalian cell and tissue imaging, with a focus on the advances and applications of CARS and SRS microscopy, for a better understanding of the metabolism and dynamics of lipids, protein, glucose, and nucleic acids in mammalian cells and tissues. This article is categorized under: Laboratory Methods and Technologies > Imaging Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"12 6","pages":"e1501"},"PeriodicalIF":7.9000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554227/pdf/nihms-1621488.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Direct imaging of metabolism in cells or multicellular organisms is important for understanding many biological processes. Raman scattering (RS) microscopy, particularly, coherent Raman scattering (CRS) such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), has emerged as a powerful platform for cellular imaging due to its high chemical selectivity, sensitivity, and imaging speed. RS microscopy has been extensively used for the identification of subcellular structures, metabolic observation, and phenotypic characterization. Conjugating RS modalities with other techniques such as fluorescence or infrared (IR) spectroscopy, flow cytometry, and RNA-sequencing can further extend the applications of RS imaging in microbiology, system biology, neurology, tumor biology and more. Here we overview RS modalities and techniques for mammalian cell and tissue imaging, with a focus on the advances and applications of CARS and SRS microscopy, for a better understanding of the metabolism and dynamics of lipids, protein, glucose, and nucleic acids in mammalian cells and tissues. This article is categorized under: Laboratory Methods and Technologies > Imaging Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine