WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image.

IF 7.6 1区 农林科学 Q1 AGRONOMY
Chaeyeong Yun, Yu Hwan Kim, Sung Jae Lee, Su Jin Im, Kang Ryoung Park
{"title":"WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image.","authors":"Chaeyeong Yun,&nbsp;Yu Hwan Kim,&nbsp;Sung Jae Lee,&nbsp;Su Jin Im,&nbsp;Kang Ryoung Park","doi":"10.34133/plantphenomics.0031","DOIUrl":null,"url":null,"abstract":"<p><p>Automatically segmenting crops and weeds in the image input from cameras accurately is essential in various agricultural technology fields, such as herbicide spraying by farming robots based on crop and weed segmentation information. However, crop and weed images taken with a camera have motion blur due to various causes (e.g., vibration or shaking of a camera on farming robots, shaking of crops and weeds), which reduces the accuracy of crop and weed segmentation. Therefore, robust crop and weed segmentation for motion-blurred images is essential. However, previous crop and weed segmentation studies were performed without considering motion-blurred images. To solve this problem, this study proposed a new motion-blur image restoration method based on a wide receptive field attention network (WRA-Net), based on which we investigated improving crop and weed segmentation accuracy in motion-blurred images. WRA-Net comprises a main block called a lite wide receptive field attention residual block, which comprises modified depthwise separable convolutional blocks, an attention gate, and a learnable skip connection. We conducted experiments using the proposed method with 3 open databases: BoniRob, crop/weed field image, and rice seedling and weed datasets. According to the results, the crop and weed segmentation accuracy based on mean intersection over union was 0.7444, 0.7741, and 0.7149, respectively, demonstrating that this method outperformed the state-of-the-art methods.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0031"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243196/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0031","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

Abstract

Automatically segmenting crops and weeds in the image input from cameras accurately is essential in various agricultural technology fields, such as herbicide spraying by farming robots based on crop and weed segmentation information. However, crop and weed images taken with a camera have motion blur due to various causes (e.g., vibration or shaking of a camera on farming robots, shaking of crops and weeds), which reduces the accuracy of crop and weed segmentation. Therefore, robust crop and weed segmentation for motion-blurred images is essential. However, previous crop and weed segmentation studies were performed without considering motion-blurred images. To solve this problem, this study proposed a new motion-blur image restoration method based on a wide receptive field attention network (WRA-Net), based on which we investigated improving crop and weed segmentation accuracy in motion-blurred images. WRA-Net comprises a main block called a lite wide receptive field attention residual block, which comprises modified depthwise separable convolutional blocks, an attention gate, and a learnable skip connection. We conducted experiments using the proposed method with 3 open databases: BoniRob, crop/weed field image, and rice seedling and weed datasets. According to the results, the crop and weed segmentation accuracy based on mean intersection over union was 0.7444, 0.7741, and 0.7149, respectively, demonstrating that this method outperformed the state-of-the-art methods.

Abstract Image

Abstract Image

Abstract Image

WRA-Net:作物和杂草图像运动去模糊的宽接受野注意网络。
在各种农业技术领域,如农业机器人基于农作物和杂草的分割信息进行除草剂喷洒等,都需要对摄像机输入的图像中的作物和杂草进行准确的自动分割。然而,用相机拍摄的作物和杂草图像由于各种原因(例如,农业机器人上的相机振动或晃动,作物和杂草晃动)而产生运动模糊,从而降低了作物和杂草分割的准确性。因此,对运动模糊图像进行稳健的作物和杂草分割是必不可少的。然而,以前的作物和杂草分割研究没有考虑运动模糊图像。为了解决这一问题,本文提出了一种基于宽感受野注意网络(WRA-Net)的运动模糊图像恢复方法,并在此基础上研究了如何提高运动模糊图像中作物和杂草的分割精度。WRA-Net包括一个被称为生活宽接受场注意残差块的主块,该块由改进的深度可分离卷积块、一个注意门和一个可学习的跳跃连接组成。我们使用BoniRob、作物/杂草田图像和水稻幼苗和杂草数据集3个开放数据库进行了实验。结果表明,基于平均交联的作物和杂草分割精度分别为0.7444、0.7741和0.7149,表明该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信