Robin Van Oirbeek, Jolien Ponnet, Bart Baesens, Tim Verdonck
{"title":"Computational Efficient Approximations of the Concordance Probability in a Big Data Setting.","authors":"Robin Van Oirbeek, Jolien Ponnet, Bart Baesens, Tim Verdonck","doi":"10.1089/big.2022.0107","DOIUrl":null,"url":null,"abstract":"<p><p>Performance measurement is an essential task once a statistical model is created. The area under the receiving operating characteristics curve (AUC) is the most popular measure for evaluating the quality of a binary classifier. In this case, the AUC is equal to the concordance probability, a frequently used measure to evaluate the discriminatory power of the model. Contrary to AUC, the concordance probability can also be extended to the situation with a continuous response variable. Due to the staggering size of data sets nowadays, determining this discriminatory measure requires a tremendous amount of costly computations and is hence immensely time consuming, certainly in case of a continuous response variable. Therefore, we propose two estimation methods that calculate the concordance probability in a fast and accurate way and that can be applied to both the discrete and continuous setting. Extensive simulation studies show the excellent performance and fast computing times of both estimators. Finally, experiments on two real-life data sets confirm the conclusions of the artificial simulations.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"243-268"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0107","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Performance measurement is an essential task once a statistical model is created. The area under the receiving operating characteristics curve (AUC) is the most popular measure for evaluating the quality of a binary classifier. In this case, the AUC is equal to the concordance probability, a frequently used measure to evaluate the discriminatory power of the model. Contrary to AUC, the concordance probability can also be extended to the situation with a continuous response variable. Due to the staggering size of data sets nowadays, determining this discriminatory measure requires a tremendous amount of costly computations and is hence immensely time consuming, certainly in case of a continuous response variable. Therefore, we propose two estimation methods that calculate the concordance probability in a fast and accurate way and that can be applied to both the discrete and continuous setting. Extensive simulation studies show the excellent performance and fast computing times of both estimators. Finally, experiments on two real-life data sets confirm the conclusions of the artificial simulations.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.