Driving Aggressively or Conservatively? Investigating the Effects of Automated Vehicle Interaction Type and Road Event on Drivers' Trust and Preferred Driving Style.
{"title":"Driving Aggressively or Conservatively? Investigating the Effects of Automated Vehicle Interaction Type and Road Event on Drivers' Trust and Preferred Driving Style.","authors":"Yuni Lee, Miaomiao Dong, Vidya Krishnamoorthy, Kumar Akash, Teruhisa Misu, Zhaobo Zheng, Gaojian Huang","doi":"10.1177/00187208231181199","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the impact of automated vehicle (AV) interaction mode on drivers' trust and preferred driving styles in response to pedestrian- and traffic-related road events.</p><p><strong>Background: </strong>The rising popularity of AVs highlights the need for a deeper understanding of the factors that influence trust in AV. Trust is a crucial element, particularly because current AVs are only partially automated and may require manual takeover; miscalibrated trust could have an adverse effect on safe driver-vehicle interaction. However, before attempting to calibrate trust, it is vital to comprehend the factors that contribute to trust in automation.</p><p><strong>Methods: </strong>Thirty-six individuals participated in the experiment. Driving scenarios incorporated adaptive SAE Level 2 AV algorithms, driven by participants' event-based trust in AVs and preferences for AV driving styles. The study measured participants' trust, preferences, and the number of takeover behaviors.</p><p><strong>Results: </strong>Higher levels of trust and preference for more aggressive AV driving styles were found in response to pedestrian-related events compared to traffic-related events. Furthermore, drivers preferred the trust-based adaptive mode and had fewer takeover behaviors than the preference-based adaptive and fixed modes. Lastly, participants with higher trust in AVs favored more aggressive driving styles and made fewer takeover attempts.</p><p><strong>Conclusion: </strong>Adaptive AV interaction modes that depend on real-time event-based trust and event types may represent a promising approach to human-automation interaction in vehicles.</p><p><strong>Application: </strong>Findings from this study can support future driver- and situation-aware AVs that can adapt their behavior for improved driver-vehicle interaction.</p>","PeriodicalId":56333,"journal":{"name":"Human Factors","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00187208231181199","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to investigate the impact of automated vehicle (AV) interaction mode on drivers' trust and preferred driving styles in response to pedestrian- and traffic-related road events.
Background: The rising popularity of AVs highlights the need for a deeper understanding of the factors that influence trust in AV. Trust is a crucial element, particularly because current AVs are only partially automated and may require manual takeover; miscalibrated trust could have an adverse effect on safe driver-vehicle interaction. However, before attempting to calibrate trust, it is vital to comprehend the factors that contribute to trust in automation.
Methods: Thirty-six individuals participated in the experiment. Driving scenarios incorporated adaptive SAE Level 2 AV algorithms, driven by participants' event-based trust in AVs and preferences for AV driving styles. The study measured participants' trust, preferences, and the number of takeover behaviors.
Results: Higher levels of trust and preference for more aggressive AV driving styles were found in response to pedestrian-related events compared to traffic-related events. Furthermore, drivers preferred the trust-based adaptive mode and had fewer takeover behaviors than the preference-based adaptive and fixed modes. Lastly, participants with higher trust in AVs favored more aggressive driving styles and made fewer takeover attempts.
Conclusion: Adaptive AV interaction modes that depend on real-time event-based trust and event types may represent a promising approach to human-automation interaction in vehicles.
Application: Findings from this study can support future driver- and situation-aware AVs that can adapt their behavior for improved driver-vehicle interaction.
期刊介绍:
Human Factors: The Journal of the Human Factors and Ergonomics Society publishes peer-reviewed scientific studies in human factors/ergonomics that present theoretical and practical advances concerning the relationship between people and technologies, tools, environments, and systems. Papers published in Human Factors leverage fundamental knowledge of human capabilities and limitations – and the basic understanding of cognitive, physical, behavioral, physiological, social, developmental, affective, and motivational aspects of human performance – to yield design principles; enhance training, selection, and communication; and ultimately improve human-system interfaces and sociotechnical systems that lead to safer and more effective outcomes.