Instant multicolor super-resolution microscopy with deep convolutional neural network.

Songyue Wang, Chang Qiao, Amin Jiang, Di Li, Dong Li
{"title":"Instant multicolor super-resolution microscopy with deep convolutional neural network.","authors":"Songyue Wang,&nbsp;Chang Qiao,&nbsp;Amin Jiang,&nbsp;Di Li,&nbsp;Dong Li","doi":"10.52601/bpr.2021.210017","DOIUrl":null,"url":null,"abstract":"<p><p>Multicolor super-resolution (SR) microscopy plays a critical role in cell biology research and can visualize the interactions between different organelles and the cytoskeleton within a single cell. However, more color channels bring about a heavier budget for imaging and sample preparation, and the use of fluorescent dyes of higher emission wavelengths leads to a worse spatial resolution. Recently, deep convolutional neural networks (CNNs) have shown a compelling capability in cell segmentation, super-resolution reconstruction, image restoration, and many other aspects. Taking advantage of CNN's strong representational ability, we devised a deep CNN-based instant multicolor super-resolution imaging method termed IMC-SR and demonstrated that it could be used to separate different biological components labeled with the same fluorophore, and generate multicolor images from a single super-resolution image <i>in silico</i>. By IMC-SR, we achieved fast three-color live-cell super-resolution imaging with ~100 nm resolution over a long temporal duration, revealing the complicated interactions between multiple organelles and the cytoskeleton in a single COS-7 cell.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":"7 4","pages":"304-312"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233468/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2021.210017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multicolor super-resolution (SR) microscopy plays a critical role in cell biology research and can visualize the interactions between different organelles and the cytoskeleton within a single cell. However, more color channels bring about a heavier budget for imaging and sample preparation, and the use of fluorescent dyes of higher emission wavelengths leads to a worse spatial resolution. Recently, deep convolutional neural networks (CNNs) have shown a compelling capability in cell segmentation, super-resolution reconstruction, image restoration, and many other aspects. Taking advantage of CNN's strong representational ability, we devised a deep CNN-based instant multicolor super-resolution imaging method termed IMC-SR and demonstrated that it could be used to separate different biological components labeled with the same fluorophore, and generate multicolor images from a single super-resolution image in silico. By IMC-SR, we achieved fast three-color live-cell super-resolution imaging with ~100 nm resolution over a long temporal duration, revealing the complicated interactions between multiple organelles and the cytoskeleton in a single COS-7 cell.

Abstract Image

Abstract Image

Abstract Image

即时多色超分辨率显微镜与深度卷积神经网络。
多色超分辨率显微镜(SR)在细胞生物学研究中起着至关重要的作用,它可以可视化单个细胞内不同细胞器和细胞骨架之间的相互作用。然而,更多的颜色通道带来更大的成像和样品制备预算,并且使用更高发射波长的荧光染料导致更差的空间分辨率。近年来,深度卷积神经网络(cnn)在细胞分割、超分辨率重建、图像恢复等方面表现出了令人信服的能力。利用CNN强大的表征能力,我们设计了一种基于深度CNN的即时多色超分辨率成像方法,称为IMC-SR,并证明了它可以用于分离用同一荧光团标记的不同生物成分,并从单个超分辨率图像中生成多色图像。通过IMC-SR,我们实现了长时间~100 nm分辨率的三色活细胞超分辨率快速成像,揭示了单个COS-7细胞中多个细胞器与细胞骨架之间复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
117
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信