One-Trial Appetitive Learning Tasks for Drug Targeting.

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Robert Lalonde, Catherine Strazielle
{"title":"One-Trial Appetitive Learning Tasks for Drug Targeting.","authors":"Robert Lalonde, Catherine Strazielle","doi":"10.2174/1871527322666230607152758","DOIUrl":null,"url":null,"abstract":"<p><p>One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"680-686"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527322666230607152758","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.

药物靶向的单次试验性学习任务
单试开胃学习是从单试被动回避学习发展而来的,是逆行性遗忘的标准测试。它由一次学习试验和一次保留试验组成,在保留试验中会出现生理操作。与被动回避学习一样,缺乏食物或水的大鼠或小鼠在围栏内寻找食物或水时,很容易受到电休克治疗或注射各种药物产生的逆行性遗忘的影响。在对大鼠、鸟类、蜗牛、蜜蜂和果蝇进行的单次味觉或气味学习中,食物或气味与上下文刺激或巴甫洛夫条件反射的无条件刺激之间存在关联。蜜蜂的气味相关任务对蛋白质合成抑制和胆碱能受体阻断敏感,两者都类似于啮齿类动物被动回避反应的结果,而果蝇的任务则对基因修饰和衰老敏感,这与转基因啮齿类动物和衰老啮齿类动物的被动回避反应相似。这些结果提供了物种间学习神经化学基础相似性的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
158
审稿时长
6-12 weeks
期刊介绍: Aims & Scope CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信