{"title":"In silico and in vitro investigation of bile salts as coformers for edaravone coamorphous dispersion- Part I","authors":"Dhrumi Patel, Sarika Wairkar","doi":"10.1016/j.chemphyslip.2023.105302","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts<span> to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1–7 pH range. </span></span>In silico studies<span> to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and </span></span>in vitro release<span><span><span><span> study. Hydrogen bond formation between the </span>pyrazolone<span> ring of EDR and the -OH group of the phenanthrene<span> ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and </span></span></span>XRPD<span> data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1 N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002 ± 0.942 %; Accelerated condition: 97.016 ± 1.110 %). Although coamorphous form and </span></span>hydrogen bonding<span><span> between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on </span>oral absorption of EDR which will be studied in animals in the second part of this work.</span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"253 ","pages":"Article 105302"},"PeriodicalIF":3.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308423000245","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1–7 pH range. In silico studies to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and in vitro release study. Hydrogen bond formation between the pyrazolone ring of EDR and the -OH group of the phenanthrene ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and XRPD data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1 N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002 ± 0.942 %; Accelerated condition: 97.016 ± 1.110 %). Although coamorphous form and hydrogen bonding between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on oral absorption of EDR which will be studied in animals in the second part of this work.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.