{"title":"Inferring Latent Structure in Polytomous Data with a Higher-Order Diagnostic Model.","authors":"Steven Andrew Culpepper, James J Balamuta","doi":"10.1080/00273171.2021.1985949","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers continue to develop and advance models for diagnostic research in the social and behavioral sciences. These diagnostic models (DMs) provide researchers with a framework for providing a fine-grained classification of respondents into substantively meaningful latent classes as defined by a multivariate collection of binary attributes. A central concern for DMs is advancing exploratory methods for uncovering the latent structure, which corresponds with the relationship between unobserved binary attributes and observed polytomous items with two or more response options. Multivariate behavioral polytomous data are often collected within a higher-order design where general factors underlying first-order latent variables. This study advances existing exploratory DMs for polytomous data by proposing a new method for inferring the latent structure underlying polytomous response data using a higher-order model to describe dependence among the discrete latent attributes. We report a novel Bayesian formulation that uses variable selection techniques for inferring the latent structure along with a higher-order factor model for attributes. We report evidence of accurate parameter recovery in a Monte Carlo simulation study and present results from an application to the 2012 Programme for International Student Assessment (PISA) problem-solving vignettes to demonstrate the method.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"58 2","pages":"368-386"},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2021.1985949","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Researchers continue to develop and advance models for diagnostic research in the social and behavioral sciences. These diagnostic models (DMs) provide researchers with a framework for providing a fine-grained classification of respondents into substantively meaningful latent classes as defined by a multivariate collection of binary attributes. A central concern for DMs is advancing exploratory methods for uncovering the latent structure, which corresponds with the relationship between unobserved binary attributes and observed polytomous items with two or more response options. Multivariate behavioral polytomous data are often collected within a higher-order design where general factors underlying first-order latent variables. This study advances existing exploratory DMs for polytomous data by proposing a new method for inferring the latent structure underlying polytomous response data using a higher-order model to describe dependence among the discrete latent attributes. We report a novel Bayesian formulation that uses variable selection techniques for inferring the latent structure along with a higher-order factor model for attributes. We report evidence of accurate parameter recovery in a Monte Carlo simulation study and present results from an application to the 2012 Programme for International Student Assessment (PISA) problem-solving vignettes to demonstrate the method.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.