Eben D. Thoma , Ali Gitipour , Ingrid George , Peter Kariher , Megan MacDonald , Gustavo Queiroz , Parikshit Deshmukh , Josh Childers , Tim Rodak , Volker Schmid
{"title":"Assessment of chemical facility ethylene oxide emissions using mobile and multipoint monitoring","authors":"Eben D. Thoma , Ali Gitipour , Ingrid George , Peter Kariher , Megan MacDonald , Gustavo Queiroz , Parikshit Deshmukh , Josh Childers , Tim Rodak , Volker Schmid","doi":"10.1016/j.aeaoa.2023.100214","DOIUrl":null,"url":null,"abstract":"<div><p>Ethylene oxide (EtO) is a hazardous air pollutant that can be emitted from a variety of difficult to measure industrial sources, such as fugitive leaks, wastewater handling, and episodic releases. Emerging next generation emission measurement (NGEM) approaches capable of time-resolved, low parts per billion by volume (ppbv) method detection limits (MDLs) can help facilities understand and reduce EtO and other air pollutant emissions from these sources yielding a range of environmental and public health benefits. In October 2021, a first of its kind 4-day observational study was conducted at an EtO chemical facility in the midwestern United States. The study had dual objectives to both improve understanding of EtO emission sources within the facility and advance NGEM methods. Using cavity ring-down spectroscopy (CRDS) instruments, a combination of mobile surveys and stationary multipoint process unit monitoring assessed EtO concentrations in and near facility operations, while testing and comparing measurement methods. The study concluded that four main areas of EtO source emissions existed within the facility, each possessing unique emission characteristics. Episodic EtO emissions from supply railcar switchovers and batch reactor washouts, lasting seconds to minutes in duration, produced EtO concentrations exceeding 500 ppbv inside the process unit in some cases. In one instance, EtO at ∼30 ppbv was briefly observed hundreds of meters from the process unit. Lower level but more sustained EtO concentrations were observed near an EtO transfer pump and wastewater tank outfall and drain system. Overall, 4.6% of mobile survey data were above the 1.2 ppbv mobile test MDL while the nine stationary sampling locations ranged from 17.7% to 82.8% of data above the 1.0 ppbv multipoint test MDL. This paper describes the EtO emissions observed in and near the four defined source areas within the facility and provides details of the NGEM method development advances accomplished as part of the study.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"18 ","pages":"Article 100214"},"PeriodicalIF":3.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259016212300014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene oxide (EtO) is a hazardous air pollutant that can be emitted from a variety of difficult to measure industrial sources, such as fugitive leaks, wastewater handling, and episodic releases. Emerging next generation emission measurement (NGEM) approaches capable of time-resolved, low parts per billion by volume (ppbv) method detection limits (MDLs) can help facilities understand and reduce EtO and other air pollutant emissions from these sources yielding a range of environmental and public health benefits. In October 2021, a first of its kind 4-day observational study was conducted at an EtO chemical facility in the midwestern United States. The study had dual objectives to both improve understanding of EtO emission sources within the facility and advance NGEM methods. Using cavity ring-down spectroscopy (CRDS) instruments, a combination of mobile surveys and stationary multipoint process unit monitoring assessed EtO concentrations in and near facility operations, while testing and comparing measurement methods. The study concluded that four main areas of EtO source emissions existed within the facility, each possessing unique emission characteristics. Episodic EtO emissions from supply railcar switchovers and batch reactor washouts, lasting seconds to minutes in duration, produced EtO concentrations exceeding 500 ppbv inside the process unit in some cases. In one instance, EtO at ∼30 ppbv was briefly observed hundreds of meters from the process unit. Lower level but more sustained EtO concentrations were observed near an EtO transfer pump and wastewater tank outfall and drain system. Overall, 4.6% of mobile survey data were above the 1.2 ppbv mobile test MDL while the nine stationary sampling locations ranged from 17.7% to 82.8% of data above the 1.0 ppbv multipoint test MDL. This paper describes the EtO emissions observed in and near the four defined source areas within the facility and provides details of the NGEM method development advances accomplished as part of the study.