Non-invasive detection of cardiac allograft rejection among heart transplant recipients using an electrocardiogram based deep learning model.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2023-01-13 eCollection Date: 2023-03-01 DOI:10.1093/ehjdh/ztad001
Demilade Adedinsewo, Heather D Hardway, Andrea Carolina Morales-Lara, Mikolaj A Wieczorek, Patrick W Johnson, Erika J Douglass, Bryan J Dangott, Raouf E Nakhleh, Tathagat Narula, Parag C Patel, Rohan M Goswami, Melissa A Lyle, Alexander J Heckman, Juan C Leoni-Moreno, D Eric Steidley, Reza Arsanjani, Brian Hardaway, Mohsin Abbas, Atta Behfar, Zachi I Attia, Francisco Lopez-Jimenez, Peter A Noseworthy, Paul Friedman, Rickey E Carter, Mohamad Yamani
{"title":"Non-invasive detection of cardiac allograft rejection among heart transplant recipients using an electrocardiogram based deep learning model.","authors":"Demilade Adedinsewo, Heather D Hardway, Andrea Carolina Morales-Lara, Mikolaj A Wieczorek, Patrick W Johnson, Erika J Douglass, Bryan J Dangott, Raouf E Nakhleh, Tathagat Narula, Parag C Patel, Rohan M Goswami, Melissa A Lyle, Alexander J Heckman, Juan C Leoni-Moreno, D Eric Steidley, Reza Arsanjani, Brian Hardaway, Mohsin Abbas, Atta Behfar, Zachi I Attia, Francisco Lopez-Jimenez, Peter A Noseworthy, Paul Friedman, Rickey E Carter, Mohamad Yamani","doi":"10.1093/ehjdh/ztad001","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Current non-invasive screening methods for cardiac allograft rejection have shown limited discrimination and are yet to be broadly integrated into heart transplant care. Given electrocardiogram (ECG) changes have been reported with severe cardiac allograft rejection, this study aimed to develop a deep-learning model, a form of artificial intelligence, to detect allograft rejection using the 12-lead ECG (AI-ECG).</p><p><strong>Methods and results: </strong>Heart transplant recipients were identified across three Mayo Clinic sites between 1998 and 2021. Twelve-lead digital ECG data and endomyocardial biopsy results were extracted from medical records. Allograft rejection was defined as moderate or severe acute cellular rejection (ACR) based on International Society for Heart and Lung Transplantation guidelines. The extracted data (7590 unique ECG-biopsy pairs, belonging to 1427 patients) was partitioned into training (80%), validation (10%), and test sets (10%) such that each patient was included in only one partition. Model performance metrics were based on the test set (<i>n</i> = 140 patients; 758 ECG-biopsy pairs). The AI-ECG detected ACR with an area under the receiver operating curve (AUC) of 0.84 [95% confidence interval (CI): 0.78-0.90] and 95% (19/20; 95% CI: 75-100%) sensitivity. A prospective proof-of-concept screening study (<i>n</i> = 56; 97 ECG-biopsy pairs) showed the AI-ECG detected ACR with AUC = 0.78 (95% CI: 0.61-0.96) and 100% (2/2; 95% CI: 16-100%) sensitivity.</p><p><strong>Conclusion: </strong>An AI-ECG model is effective for detection of moderate-to-severe ACR in heart transplant recipients. Our findings could improve transplant care by providing a rapid, non-invasive, and potentially remote screening option for cardiac allograft function.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/35/4b/ztad001.PMC10039431.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Current non-invasive screening methods for cardiac allograft rejection have shown limited discrimination and are yet to be broadly integrated into heart transplant care. Given electrocardiogram (ECG) changes have been reported with severe cardiac allograft rejection, this study aimed to develop a deep-learning model, a form of artificial intelligence, to detect allograft rejection using the 12-lead ECG (AI-ECG).

Methods and results: Heart transplant recipients were identified across three Mayo Clinic sites between 1998 and 2021. Twelve-lead digital ECG data and endomyocardial biopsy results were extracted from medical records. Allograft rejection was defined as moderate or severe acute cellular rejection (ACR) based on International Society for Heart and Lung Transplantation guidelines. The extracted data (7590 unique ECG-biopsy pairs, belonging to 1427 patients) was partitioned into training (80%), validation (10%), and test sets (10%) such that each patient was included in only one partition. Model performance metrics were based on the test set (n = 140 patients; 758 ECG-biopsy pairs). The AI-ECG detected ACR with an area under the receiver operating curve (AUC) of 0.84 [95% confidence interval (CI): 0.78-0.90] and 95% (19/20; 95% CI: 75-100%) sensitivity. A prospective proof-of-concept screening study (n = 56; 97 ECG-biopsy pairs) showed the AI-ECG detected ACR with AUC = 0.78 (95% CI: 0.61-0.96) and 100% (2/2; 95% CI: 16-100%) sensitivity.

Conclusion: An AI-ECG model is effective for detection of moderate-to-severe ACR in heart transplant recipients. Our findings could improve transplant care by providing a rapid, non-invasive, and potentially remote screening option for cardiac allograft function.

Abstract Image

Abstract Image

Abstract Image

利用基于心电图的深度学习模型对心脏移植受者的心脏异体移植排斥反应进行无创检测。
目的:目前针对心脏同种异体移植排斥反应的非侵入性筛查方法显示出有限的辨别能力,尚未被广泛纳入心脏移植护理中。鉴于有报道称心电图(ECG)变化与严重的心脏同种异体移植排斥反应有关,本研究旨在开发一种深度学习模型(人工智能的一种形式),利用十二导联心电图(AI-ECG)检测同种异体移植排斥反应:1998年至2021年期间,在梅奥诊所的三个地点对心脏移植受者进行了鉴定。从医疗记录中提取了十二导联数字心电图数据和心内膜活检结果。根据国际心肺移植学会指南,异体移植排斥反应被定义为中度或重度急性细胞排斥反应(ACR)。提取的数据(7590 个独特的心电图-活检对,属于 1427 名患者)被分成训练集(80%)、验证集(10%)和测试集(10%),每个患者只包含在一个分区中。模型性能指标基于测试集(n = 140 名患者;758 对心电图-活检对)。AI-ECG 检测出 ACR 的接收器工作曲线下面积 (AUC) 为 0.84 [95% 置信区间 (CI):0.78-0.90],灵敏度为 95% (19/20;95% CI:75-100%)。一项前瞻性概念验证筛查研究(n = 56;97 对心电图-活组织检查)显示,AI-ECG 检测 ACR 的 AUC = 0.78(95% CI:0.61-0.96),灵敏度为 100% (2/2;95% CI:16-100%):结论:人工智能心电图模型可有效检测心脏移植受者的中重度 ACR。我们的研究结果提供了一种快速、无创、潜在的远程心脏移植功能筛查方法,可改善移植护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信