{"title":"A varying-coefficient partially linear transformation model for length-biased data with an application to HIV vaccine studies.","authors":"Alan T K Wan, Wei Zhao, Peter Gilbert, Yong Zhou","doi":"10.1515/ijb-2021-0057","DOIUrl":null,"url":null,"abstract":"<p><p>Prevalent cohort studies in medical research often give rise to length-biased survival data that require special treatments. The recently proposed varying-coefficient partially linear transformation (VCPLT) model has the virtue of providing a more dynamic content of the effects of the covariates on survival times than the well-known partially linear transformation (PLT) model by allowing flexible interactions between the covariates. However, no existing analysis of the VCPLT model has considered length-biased sampling. In this paper, we consider the VCPLT model when the data are length-biased and right censored, thereby extending the reach of this flexible and powerful tool. We develop a martingale estimating function-based approach to the estimation of this model, provide theoretical underpinnings, evaluate finite sample performance via simulations, and showcase its practical appeal via an empirical application using data from two HIV vaccine clinical trials conducted by the U.S. National Institute of Allergy and Infectious Diseases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2021-0057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Prevalent cohort studies in medical research often give rise to length-biased survival data that require special treatments. The recently proposed varying-coefficient partially linear transformation (VCPLT) model has the virtue of providing a more dynamic content of the effects of the covariates on survival times than the well-known partially linear transformation (PLT) model by allowing flexible interactions between the covariates. However, no existing analysis of the VCPLT model has considered length-biased sampling. In this paper, we consider the VCPLT model when the data are length-biased and right censored, thereby extending the reach of this flexible and powerful tool. We develop a martingale estimating function-based approach to the estimation of this model, provide theoretical underpinnings, evaluate finite sample performance via simulations, and showcase its practical appeal via an empirical application using data from two HIV vaccine clinical trials conducted by the U.S. National Institute of Allergy and Infectious Diseases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.