Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2021-05-20 DOI:10.1007/s00521-021-06102-7
Rong Yi, Lanying Tang, Yuqiu Tian, Jie Liu, Zhihui Wu
{"title":"Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework.","authors":"Rong Yi,&nbsp;Lanying Tang,&nbsp;Yuqiu Tian,&nbsp;Jie Liu,&nbsp;Zhihui Wu","doi":"10.1007/s00521-021-06102-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumonia is one of the hazardous diseases that lead to life insecurity. It needs to be diagnosed at the initial stages to prevent a person from more damage and help them save their lives. Various techniques are used to identify pneumonia, including chest X-ray, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Chest X-ray is the most widely used method to diagnose pneumonia and is considered one of the most reliable approaches. To analyse chest X-ray images accurately, an expert radiologist needs expertise and experience in the desired domain. However, human-assisted approaches have some drawbacks: expert availability, treatment cost, availability of diagnostic tools, etc. Hence, the need for an intelligent and automated system comes into place that operates on chest X-ray images and diagnoses pneumonia. The primary purpose of technology is to develop algorithms and tools that assist humans and make their lives easier. This study proposes a scalable and interpretable deep convolutional neural network (DCNN) to identify pneumonia using chest X-ray images. The proposed modified DCNN model first extracts useful features from the images and then classifies them into normal and pneumonia classes. The proposed system has been trained and tested on chest X-ray images dataset. Various performance metrics have been utilized to inspect the stability and efficacy of the proposed model. The experimental result shows that the proposed model's performance is greater compared to the other state-of-the-art methodologies used to identify pneumonia.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00521-021-06102-7","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06102-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

Abstract

Pneumonia is one of the hazardous diseases that lead to life insecurity. It needs to be diagnosed at the initial stages to prevent a person from more damage and help them save their lives. Various techniques are used to identify pneumonia, including chest X-ray, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Chest X-ray is the most widely used method to diagnose pneumonia and is considered one of the most reliable approaches. To analyse chest X-ray images accurately, an expert radiologist needs expertise and experience in the desired domain. However, human-assisted approaches have some drawbacks: expert availability, treatment cost, availability of diagnostic tools, etc. Hence, the need for an intelligent and automated system comes into place that operates on chest X-ray images and diagnoses pneumonia. The primary purpose of technology is to develop algorithms and tools that assist humans and make their lives easier. This study proposes a scalable and interpretable deep convolutional neural network (DCNN) to identify pneumonia using chest X-ray images. The proposed modified DCNN model first extracts useful features from the images and then classifies them into normal and pneumonia classes. The proposed system has been trained and tested on chest X-ray images dataset. Various performance metrics have been utilized to inspect the stability and efficacy of the proposed model. The experimental result shows that the proposed model's performance is greater compared to the other state-of-the-art methodologies used to identify pneumonia.

Abstract Image

Abstract Image

Abstract Image

使用基于深度学习的智能计算框架识别和分类肺炎疾病。
肺炎是导致生活不安全的危险疾病之一。它需要在最初阶段进行诊断,以防止一个人受到更大的伤害,并帮助他们挽救生命。各种技术被用于识别肺炎,包括胸部X光检查、血液培养、痰培养、液体样本、支气管镜检查和脉搏血氧计。胸部X光检查是诊断肺炎最广泛使用的方法,被认为是最可靠的方法之一。为了准确分析胸部X射线图像,放射科医生需要所需领域的专业知识和经验。然而,人工辅助方法有一些缺点:专家可用性、治疗成本、诊断工具的可用性等。因此,需要一个智能和自动化的系统来操作胸部X射线图像并诊断肺炎。技术的主要目的是开发算法和工具,帮助人类,让他们的生活更轻松。这项研究提出了一种可扩展和可解释的深度卷积神经网络(DCNN),用于使用胸部X射线图像识别肺炎。所提出的改进的DCNN模型首先从图像中提取有用的特征,然后将其分为正常和肺炎两类。所提出的系统已经在胸部X射线图像数据集上进行了训练和测试。已经利用各种性能度量来检查所提出的模型的稳定性和有效性。实验结果表明,与用于识别肺炎的其他最先进的方法相比,所提出的模型的性能更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信