Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise

IF 6.2 2区 生物学 Q1 CELL BIOLOGY
Jessica R. Dent , Ben Stocks , Dean G. Campelj , Andrew Philp
{"title":"Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise","authors":"Jessica R. Dent ,&nbsp;Ben Stocks ,&nbsp;Dean G. Campelj ,&nbsp;Andrew Philp","doi":"10.1016/j.semcdb.2022.03.022","DOIUrl":null,"url":null,"abstract":"<div><p><span>Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed </span>mitochondrial biogenesis<span><span>. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular </span>homeostasis to drive mitochondrial adaptation and remodeling.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952122000969","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.

代谢稳态的短暂变化启动线粒体对耐力运动的适应
耐力运动可以增加骨骼肌中的线粒体含量和功能,这一过程被称为线粒体生物发生。目前的理解是,运动通过调节细胞营养、能量和收缩应激途径来启动骨骼肌线粒体重塑。细胞环境中的这些细微变化由许多转导途径感知,这些转导途径用于启动和协调线粒体基因转录和翻译的增加。这些急性信号事件的结果是促进线粒体的生长和组装,再加上骨骼肌中有氧ATP供应的更大能力。这篇综述的目的是强调耐力运动诱导的急性代谢事件,以及随后感知细胞稳态的这种短暂变化以驱动线粒体适应和重塑的分子途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
1.40%
发文量
310
审稿时长
9.1 weeks
期刊介绍: Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications. The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信