{"title":"lncRNA MIAT targets miR-411-5p/STAT3/PD-L1 axis mediating hepatocellular carcinoma immune response","authors":"Xiaoxia Zhang, Banglun Pan, Jiacheng Qiu, Xiaoling Ke, Shuling Shen, Xiaoqian Wang, Nanhong Tang","doi":"10.1111/iep.12440","DOIUrl":null,"url":null,"abstract":"<p>Emerging evidences have shown that long noncoding RNA (lncRNA) plays an important role in the immune escape of cancer cells. Our previous study has demonstrated that lncRNA MIAT is associated with the immune infiltration of hepatocellular carcinoma (HCC). However, the underlying mechanism of MIAT regulating the PD-L1-mediated immune escape of HCC is poorly understood. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of MIAT and PD-L1 mRNA in HCC. The relationship between MIAT, miR-411-5p, STAT3 and PD-L1 was explored by dual-luciferase reporter assay, cytotoxicity assay, Western blot and RNA immunoprecipitation (RIP). In addition, the xenograft model was established to determine the effect of MIAT on PD-L1 expression in vivo. We found that MIAT and PD-L1 were significantly upregulated in HCC tissues and the expression of PD-L1 was regulated by MIAT. The knockdown of MIAT enhanced the cytotoxicity of T cells on HCC cells. MIAT negatively regulated miR-411-5p expression, upregulated STAT3 and ultimately increased PD-L1 expression from the transcription level. The inhibition of miR-411-5p reversed STAT3 and PD-L1 expression inhibited by MIAT knockdown in HCC cells. This study suggests a novel lncRNA-mediated mechanism for HCC cells to evade the immune response; MIAT/miR-411-5p/STAT3/PD-L1 may be a novel therapeutic target for HCC.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"103 3","pages":"102-111"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12440","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Emerging evidences have shown that long noncoding RNA (lncRNA) plays an important role in the immune escape of cancer cells. Our previous study has demonstrated that lncRNA MIAT is associated with the immune infiltration of hepatocellular carcinoma (HCC). However, the underlying mechanism of MIAT regulating the PD-L1-mediated immune escape of HCC is poorly understood. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of MIAT and PD-L1 mRNA in HCC. The relationship between MIAT, miR-411-5p, STAT3 and PD-L1 was explored by dual-luciferase reporter assay, cytotoxicity assay, Western blot and RNA immunoprecipitation (RIP). In addition, the xenograft model was established to determine the effect of MIAT on PD-L1 expression in vivo. We found that MIAT and PD-L1 were significantly upregulated in HCC tissues and the expression of PD-L1 was regulated by MIAT. The knockdown of MIAT enhanced the cytotoxicity of T cells on HCC cells. MIAT negatively regulated miR-411-5p expression, upregulated STAT3 and ultimately increased PD-L1 expression from the transcription level. The inhibition of miR-411-5p reversed STAT3 and PD-L1 expression inhibited by MIAT knockdown in HCC cells. This study suggests a novel lncRNA-mediated mechanism for HCC cells to evade the immune response; MIAT/miR-411-5p/STAT3/PD-L1 may be a novel therapeutic target for HCC.
期刊介绍:
Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research.
Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".