Rui Li, Chao Ren, Sipo Zhang, Yikun Yang, Qiqi Zhao, Kechen Hou, Wenjie Yuan, Xiaowei Zhang, Bin Hu
{"title":"STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition.","authors":"Rui Li, Chao Ren, Sipo Zhang, Yikun Yang, Qiqi Zhao, Kechen Hou, Wenjie Yuan, Xiaowei Zhang, Bin Hu","doi":"10.1007/s13755-023-00226-x","DOIUrl":null,"url":null,"abstract":"<p><p>How to use the characteristics of EEG signals to obtain more complementary and discriminative data representation is an issue in EEG-based emotion recognition. Many studies have tried spatio-temporal or spatio-spectral feature fusion to obtain higher-level representations of EEG data. However, these studies ignored the complementarity between spatial, temporal and spectral domains of EEG signals, thus limiting the classification ability of models. This study proposed an end-to-end network based on ManifoldNet and BiLSTM networks, named STSNet. The STSNet first constructed a 4-D spatio-temporal-spectral data representation and a spatio-temporal data representation based on EEG signals in manifold space. After that, they were fed into the ManifoldNet network and the BiLSTM network respectively to calculate higher-level features and achieve spatio-temporal-spectral feature fusion. Finally, extensive comparative experiments were performed on two public datasets, DEAP and DREAMER, using the subject-independent leave-one-subject-out cross-validation strategy. On the DEAP dataset, the average accuracy of the valence and arousal are 69.38% and 71.88%, respectively; on the DREAMER dataset, the average accuracy of the valence and arousal are 78.26% and 82.37%, respectively. Experimental results show that the STSNet model has good emotion recognition performance.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"25"},"PeriodicalIF":3.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00226-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
How to use the characteristics of EEG signals to obtain more complementary and discriminative data representation is an issue in EEG-based emotion recognition. Many studies have tried spatio-temporal or spatio-spectral feature fusion to obtain higher-level representations of EEG data. However, these studies ignored the complementarity between spatial, temporal and spectral domains of EEG signals, thus limiting the classification ability of models. This study proposed an end-to-end network based on ManifoldNet and BiLSTM networks, named STSNet. The STSNet first constructed a 4-D spatio-temporal-spectral data representation and a spatio-temporal data representation based on EEG signals in manifold space. After that, they were fed into the ManifoldNet network and the BiLSTM network respectively to calculate higher-level features and achieve spatio-temporal-spectral feature fusion. Finally, extensive comparative experiments were performed on two public datasets, DEAP and DREAMER, using the subject-independent leave-one-subject-out cross-validation strategy. On the DEAP dataset, the average accuracy of the valence and arousal are 69.38% and 71.88%, respectively; on the DREAMER dataset, the average accuracy of the valence and arousal are 78.26% and 82.37%, respectively. Experimental results show that the STSNet model has good emotion recognition performance.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.