Forces in stem cells and cancer stem cells

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Farhan Chowdhury , Bo Huang , Ning Wang
{"title":"Forces in stem cells and cancer stem cells","authors":"Farhan Chowdhury ,&nbsp;Bo Huang ,&nbsp;Ning Wang","doi":"10.1016/j.cdev.2022.203776","DOIUrl":null,"url":null,"abstract":"<div><p>Endogenous and exogenous forces are critical in physiology and pathology of the human body. Increasing evidence suggests that these forces, mechanics, and force-associated signaling are essential in regulating functions of living cells. Here we review advances in understanding the impact of forces and mechanics on functions and fate of embryonic stem cells, adult stem cells, and cancer stem cells and the pathways of mechanotransduction in cells. Stem-cells based models are useful in understanding how forces influence physiology, pathology, and embryonic development, which is incompletely understood, especially for mammals. We highlight increasing efforts and emerging favorable clinical outcomes in mechanomedicine, application of mechanobiology to medicine. Major progresses in mechanobiology, the pillar of mechanomedicine and mechanohealth (application of mechanobiology to health), are pivotal in understanding the life of force and making substantial advances in medicine and health.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203923/pdf/nihms-1797316.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290122000122","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Endogenous and exogenous forces are critical in physiology and pathology of the human body. Increasing evidence suggests that these forces, mechanics, and force-associated signaling are essential in regulating functions of living cells. Here we review advances in understanding the impact of forces and mechanics on functions and fate of embryonic stem cells, adult stem cells, and cancer stem cells and the pathways of mechanotransduction in cells. Stem-cells based models are useful in understanding how forces influence physiology, pathology, and embryonic development, which is incompletely understood, especially for mammals. We highlight increasing efforts and emerging favorable clinical outcomes in mechanomedicine, application of mechanobiology to medicine. Major progresses in mechanobiology, the pillar of mechanomedicine and mechanohealth (application of mechanobiology to health), are pivotal in understanding the life of force and making substantial advances in medicine and health.

Abstract Image

干细胞和癌症干细胞的力量
内源性和外源性力量在人体的生理和病理中是至关重要的。越来越多的证据表明,这些力、力学和力相关的信号在调节活细胞的功能中是必不可少的。本文综述了力和力学对胚胎干细胞、成体干细胞和癌症干细胞的功能和命运的影响以及细胞中力学转导途径的研究进展。基于干细胞的模型有助于理解力如何影响生理、病理和胚胎发育,这是不完全理解的,特别是对哺乳动物。我们强调机械医学,机械生物学在医学上的应用不断增加的努力和出现良好的临床结果。机械生物学是机械医学和机械健康(将机械生物学应用于健康)的支柱,其重大进展对于理解力的生命和在医学和健康方面取得重大进展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信