{"title":"Optimizing vancomycin release from novel carbon fiber-reinforced polymer implants with small holes: periprosthetic joint infection treatment.","authors":"Satoshi Kamihata, Wataru Ando, Ichiro Nakahara, Hideaki Enami, Kazuma Takashima, Keisuke Uemura, Hidetoshi Hamada, Nobuhiko Sugano","doi":"10.1007/s10047-023-01407-x","DOIUrl":null,"url":null,"abstract":"<p><p>Periprosthetic joint infection (PJI) is a catastrophic complication after total hip arthroplasty. A new drug-loaded carbon fiber-reinforced polymer (CFRP) prosthesis with a sustained drug-release mechanism is being developed for one-stage surgery. We aimed to examine the diffusion dynamics of vancomycin from vancomycin paste-loaded CFRP implants. The differences in the in vitro diffusion dynamics of vancomycin paste were investigated using the elution test by varying parameters. These included the mixing ratio of vancomycin and distilled water (1:0.8, 1:1.2, and 1:1.4) for vancomycin paste, and hole diameter (1 mm and 2 mm) on the container. The in vivo diffusion dynamics were investigated using a rabbit model with vancomycin-loaded CFRP implants placed subcutaneously. The in vitro experiments showed that the diffusion effect of vancomycin was highest in the parameters of vancomycin paste with distilled water mixed in a ratio of 1:1.4, and with a 2 mm hole diameter. The in vivo experiments revealed diffusion dynamics similar to those observed in the in vitro study. The drug diffusion effect tended to be high for vancomycin paste with a large water ratio, and a large diameter of holes. These results indicate that the drug diffusion dynamics from a CFRP implant with holes can be adjusted by varying the water ratio of the vancomycin paste, and the hole size on the CFRP implant.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-023-01407-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periprosthetic joint infection (PJI) is a catastrophic complication after total hip arthroplasty. A new drug-loaded carbon fiber-reinforced polymer (CFRP) prosthesis with a sustained drug-release mechanism is being developed for one-stage surgery. We aimed to examine the diffusion dynamics of vancomycin from vancomycin paste-loaded CFRP implants. The differences in the in vitro diffusion dynamics of vancomycin paste were investigated using the elution test by varying parameters. These included the mixing ratio of vancomycin and distilled water (1:0.8, 1:1.2, and 1:1.4) for vancomycin paste, and hole diameter (1 mm and 2 mm) on the container. The in vivo diffusion dynamics were investigated using a rabbit model with vancomycin-loaded CFRP implants placed subcutaneously. The in vitro experiments showed that the diffusion effect of vancomycin was highest in the parameters of vancomycin paste with distilled water mixed in a ratio of 1:1.4, and with a 2 mm hole diameter. The in vivo experiments revealed diffusion dynamics similar to those observed in the in vitro study. The drug diffusion effect tended to be high for vancomycin paste with a large water ratio, and a large diameter of holes. These results indicate that the drug diffusion dynamics from a CFRP implant with holes can be adjusted by varying the water ratio of the vancomycin paste, and the hole size on the CFRP implant.
期刊介绍:
The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.